Gorgias_scripts 11/26/25, 10:44 PM

GORGIAS USER ENGAGEMENT ANALYSIS

PYTHON SCRIPTS

import pandas as pd
import matplotlib.pyplot as plt

df_user_engagement = pd.read_csv('/Users/pierremora/Desktop/Gorgias/user_enc
df_daily_engagement = pd.read_csv('/Users/pierremora/Desktop/Gorgias/daily_e

df_total_conversions = pd.read_csv('/Users/pierremora/Desktop/Gorgias/total_

Creating a bar chart showing the difference between total trials
and total conversions

total_trials = df_total_conversions['total_trials'].values[0]
total_conversions = df_total_conversions['total_conversions'].values[0]
conversion_rate_percentage = df_total_conversions['conversion_rate_percentac

Data for the bar chart
categories = ['Total Trials', 'Total Conversions']
values = [total_trials, total_conversions]

Custom colors

grey_color = '#D3D3D3' # Light grey for total trials
light_pink_color = '"#FFB6C1' # Light pink for total conversions
black_color = '#000000' +# Black for text

Creating the bar chart
plt.figure(figsize=(10, 6))
bars = plt.bar(categories, values, color=[grey_color, light_pink_color])

Annotate the bars with the actual numbers
plt.text(0, total_trials + 50, f'{total_trials:,}', ha='center', va='bottom'
plt.text(1, total_conversions + 50, f'{total_conversions:,}', ha='center', \

Annotate with conversion rate even further above the total conversions nun
plt.text(1, total_conversions + 400, f'Conversion Rate: {conversion_rate_per
ha='center', va='bottom', fontsize=12, color=black_color, fontweigf

Adding titles and labels
plt.title('Total Trials vs Total Conversions', fontsize=16, color=black_colc
plt.xticks(fontsize=12, color=black_color)

file:///Users/pierremora/Downloads/Gorgias_scripts.html Page 1 of 22

Gorgias_scripts 11/26/25, 10:44 PM

plt.yticks([]) # Remove the count numbers on the left

Removing grid lines
plt.grid(False)

plt.show()
Total Trials vs Total Conversions
7,289
Conversion Rate: 15.57%
1,135
Total 'Trials Total Cor;versions

df_integration_conversion = pd.read_csv('/Users/pierremora/Desktop/Gorgias/i

Sorting by conversion rate for better visualization
df_integration_conversion = df_integration_conversion.sort_values(by="'conver

Define the figure size and style
plt.figure(figsize=(12, 8))
sns.set(style="whitegrid")

Create a horizontal bar chart
bars = plt.barh(df_integration_conversion['integration_type']l, df_integratic
color=sns.color_palette("coolwarm", len(df_integration_conve

Add the conversion rate as annotations on the bars
for i in range(len(df_integration_conversion)):
plt.text(df_integration_conversion['conversion_rate_with_integration'].v
i,
f"{df_integration_conversion['conversion_rate_with_integration'

file:///Users/pierremora/Downloads/Gorgias_scripts.html Page 2 of 22

Gorgias_scripts 11/26/25, 10:44 PM

va='center',
fontsize=10,
color="black')

Add total trials annotations on the bars
for i in range(len(df_integration_conversion)):
plt.text(df_integration_conversion['conversion_rate_with_integration'].v

1,
f"Trials: {df_integration_conversion['total_trials_with_integre
va='center',
ha='right’,
fontsize=10,
color="white')

Add titles and labels

plt.title('Conversion Rate by Integration Type', fontsize=16, color='black',
plt.xlabel('Conversion Rate (%)', fontsize=12, color='black')
plt.ylabel('Integration Type', fontsize=12, color='black"')

Invert y-axis to have the highest rate at the top
plt.gca().invert_yaxis()

Remove grid lines
plt.grid(False)

Show the plot
plt.show()

Conversion Rate by Integration Type

social_network Trials: 600 78.33%

other Trials: 88 64.77%

8 third_party_app 60.32%
=3 _
[
c
k=l
=
[
3
= gorgias_chat 56.47%
ecommerce_platform Trials: 2,006 49.10%
email Trials: 3,190 34.39%

10 20 30 40 50 60 70 80
Conversion Rate (%)

o

file:///Users/pierremora/Downloads/Gorgias_scripts.html Page 3 of 22

Gorgias_scripts 11/26/25, 10:44 PM

In [7]: # Analyzing conversion rate based on engaged days
conversion_by_engaged_days = df_user_engagement.groupby('engaged_days')['cor

In [13]: import seaborn as sns

colors = sns.color_palette('husl', len(conversion_by_engaged_days)) # Gener

#Visualizing conversion rate by number of engaged days with custom colors
plt.figure(figsize=(10, 6))
plt.bar(conversion_by_engaged_days['engaged_days'], conversion_by_engaged_dz
plt.title('Conversion Rate by Number of Engaged Days')

plt.xlabel('Number of Engaged Days')

plt.ylabel('Conversion Rate (%)')
plt.xticks(conversion_by_engaged_days['engaged_days'])

plt.grid(True)

plt.show()
plt.savefig('/Users/pierremora/Desktop/Gorgias/conversion_rate_by_engaged_dz

Conversion Rate by Number of Engaged Days

Conversion Rate (%)

1 2 3 4 5 6 7
Number of Engaged Days

<Figure size 640x480 with 0 Axes>

In [14]: # Visualizing user engagement over time (already done previously)
plt.figure(figsize=(10, 6))
plt.plot(df_daily_engagement['day_of_trial'l, df_daily_engagement['engaged_c
plt.title('User Engagement Over 7-Day Trial Period')
plt.xlabel('Day of Trial')
plt.ylabel('Number of Engaged Accounts')

file:///Users/pierremora/Downloads/Gorgias_scripts.html Page 4 of 22

Gorgias_scripts 11/26/25, 10:44 PM

plt.grid(True)
plt.show()

plt.savefig('/Users/pierremora/Desktop/Gorgias/user_engagement_over_time.pnc

User Engagement Over 7-Day Trial Period

650

600 -

550 A

w

o

o
1

Number of Engaged Accounts
o
w
o

350 A
300 A
250
0 1 2 3 4 5 6
Day of Trial

<Figure size 640x480 with @ Axes>
df_integration_count = pd.read_csv('/Users/pierremora/Desktop/Gorgias/integr

Calculating conversion rate based on the number of unique integrations set
conversion_by_integration_count = df_integration_count.groupby('number_of_ir

Multiplying conversion rate by 100 to convert to percentage
conversion_by_integration_count['converted'] *= 100

Plotting the conversion rate by number of integrations using Seaborn
plt.figure(figsize=(10, 6))

sns.barplot(x="number_of_integrations', y='converted', data=conversion_by_ir
plt.title('Conversion Rate by Number of Integrations')

plt.xlabel('Number of Integrations')

plt.ylabel('Conversion Rate (%)"')

plt.grid(True)

plt.show()

plt.show()

file:///Users/pierremora/Downloads/Gorgias_scripts.html Page 5 of 22

Gorgias_scripts 11/26/25, 10:44 PM

Conversion Rate by Number of Integrations

80
60
40
20 . I
0
1 2 3 4 5 6

Number of Integrations

Conversion Rate (%)

df_feature_usage_conversion = pd.read_csv('/Users/pierremora/Desktop/Gorgias

pivot_table = df_feature_usage_conversion.pivot_table(
index="'number_of_integrations',
columns="submitted_support_ticket',
values='converted',
aggfunc="mean'

)

Creating the heatmap

plt.figure(figsize=(10, 8))

sns.heatmap(pivot_table * 100, annot=True, fmt=".1f", cmap='coolwarm', cbhar_
plt.title('Conversion Rate by Number of Integrations and Support Ticket Subn
plt.xlabel('Submitted Support Ticket')

plt.ylabel('Number of Integrations')

plt.show()

file:///Users/pierremora/Downloads/Gorgias_scripts.html Page 6 of 22

Gorgias_scripts 11/26/25, 10:44 PM

Conversion Rate by Number of Integrations and Support Ticket Submission

U)N _m
c)
bl X
wh—t e
o 2
% [0
- o
Em c
. e}
S 2
2 g
a -40 Z2
£ S
=4 o
=

<

w0

©

Submitted Support Ticket

Section 2: How Does App Usage Impact Resolution Time, First
Response Time, and Satisfaction Score?

In [92]: df_actions = pd.read_csv('/Users/pierremora/Desktop/Gorgias/Question 2/actic

In [93]: df_actions.dtypes

file:///Users/pierremora/Downloads/Gorgias_scripts.html Page 7 of 22

Gorgias_scripts

11/26/25, 10:44 PM

id object
status object
vitally_first_paid_date object
churned_at object
plan object
arr float64d
helpdesk_arr float64
voice_arr float64d
sms_arr float64
automate_arr float64
convert_arr float64
billing_interval object
shopify_plan object
gmv_bucket float64
yearly_gross_merchandise_value float64
industry_category object
enabled_apps object
support_performance_30d float64
avg_first_response_time_30d float64
avg_resolution_time_30d float64
avg_satisfaction_score_30d float64d

dtype: object

Inspect the first few rows of the enabled_apps column
print(df_actions['enabled_apps'].head(10))

[]
[]
[]
[]
[]
[]
[]
[]
[]
[l
ame: enabled_apps, dtype: object

import ast
import re

Function to fix the formatting of the enabled_apps strings

def fix_formatting(apps_str):
Add quotes around each app name correctly without over—quoting
fixed_str = re.sub(r'(\w[\w-1%)"', r'"\1"', apps_str)
return fixed_str

Applyw the formatting fix to the enabled_apps column
df_actions['enabled_apps'] = df_actions['enabled_apps'].apply(lambda x: fix_

file:///Users/pierremora/Downloads/Gorgias_scripts.html Page 8 of 22

Gorgias_scripts 11/26/25, 10:44 PM

Now safely evaluate the strings to convert them to lists
df_actions['enabled_apps'] = df_actions['enabled_apps'].apply(lambda x: eval

Verify the conversion
print(df_actions['enabled_apps'].head())

[]
[]
[]
[]
[]
ame: enabled_apps, dtype: object

ZP~PWNREFROS

Recalculating the num_enabled_apps feature
df_actions['num_enabled_apps'] = df_actions['enabled_apps'].apply(len)

Verifying the recalculation
print(df_actions[['enabled_apps', 'num_enabled_apps']].head(10))

enabled_apps num_enabled_apps
[]
[]
[]
[]
[]
[]
[1
[]
[]
[1

Ooo~NOYULE, WN RO
(SIS SR SRR S B SIS B SR

Filtering and display rows where enabled_apps is not an empty list
non_empty_apps = df_actions[df_actions['enabled_apps'].apply(lambda x: isins

Displaying the first few rows of the non-empty apps
print(non_empty_apps[['enabled_apps', 'num_enabled_apps']].head(10))

enabled_apps num_enabled_apps

599 [gmail-native, recharge-nativel 2
605 [smile-native] 1
606 [channelreply, facebook-native, gmail-native, 4
607 [conduit-1, facebook-native, gmail-native, gor... 5
609 [facebook-native, shopify-nativel 2
611 [facebook-native, optizo, shopify-nativel 3
612 [shopify-native, tiktok-shop-2, yotpo-nativel 3
613 [facebook-native, gmail-native, shopify-nativel 3
614 [gmail-native, shopify-nativel 2
615 [gmail-native, woocommercel 2

Handling Missing Values

file:///Users/pierremora/Downloads/Gorgias_scripts.html Page 9 of 22

Gorgias_scripts 11/26/25, 10:44 PM

First step is identifying the missing values in the dataset and then decide how to
handle missing values

Calculating the total number of missing values per column
missing_values = df_actions.isnull().sum()

Calculating the percentage of missing values per column
missing_percentage = (missing_values / len(df_actions)) * 100

Displaying the missing values and their percentages
missing_data = pd.DataFrame({'Missing Values': missing_values, 'Percentage':
print(missing_data.sort_values(by='Percentage', ascending=False))

Missing Values Percentage

convert_arr 23368 97.399133
sms_arr 20135 83.923808
voice_arr 20117 83.848783
avg_satisfaction_score_30d 17149 71.477993
churned_at 14287 59.549016
automate_arr 11822 49,274758
avg_resolution_time_30d 11326 47.207402
avg_Tfirst_response_time_30d 11267 46.961487
support_performance_30d 10997 45.836112
shopify_plan 10479 43.677059
yearly_gross_merchandise_value 9447 39.375625
industry_category 6018 25.083361
gmv_bucket 5904 24.608203
helpdesk_arr 3284 13.687896
id 0 0.000000
enabled_apps 0 0.000000
billing_interval 0 0.000000
status 0 0.000000
arr 0 0.000000
plan 0 0.000000
vitally_first_paid_date 0 0.000000
num_enabled_apps 0 0.000000

Selecting potential predictors

potential_predictors = [
'plan', 'num_enabled_apps', 'industry_category',
'support_performance_30d', ‘'arr', 'helpdesk_arr',
'billing_interval'

]

Encoding categorical variables to check correlations
df_encodedd = pd.get_dummies(df_actions[potential_predictors + ['avg_first_r

Checking correlations

correlationss = df_encodedd.corr()['avg_first_response_time_30d'].sort_value
print(correlationss)

file:///Users/pierremora/Downloads/Gorgias_scripts.html Page 10 of 22

Gorgias_scripts

avg_first_response_time_30d

plan_starter

plan_basic

industry_category_Computer Software
industry_category_Entertainment
industry_category_Hospital & Health Care
industry_category_Design
industry_category_Consumer Services
industry_category_Textiles
industry_category_Luxury Goods & Jewelry
industry_category_Electrical & Electronic Manufacturing
industry_category_Information Technology & Services
industry_category_Renewables & Environment
industry_category_Non-profit Organization Management
industry_category_Building Materials
industry_category_Hospitality
industry_category_Food & Beverages
industry_category_Furniture
industry_category_Music
industry_category_Wholesale
industry_category_Retail

industry_category_Health, Wellness & Fitness
industry_category_Media Production
industry_category_Sporting Goods
industry_category_Sports
industry_category_Transportation/Trucking/Railroad
industry_category_Publishing

plan_free

industry_category_Arts & Crafts
industry_category_Professional Training & Coaching
industry_category_Internet
industry_category_Medical Device
industry_category_Food Production
industry_category_Restaurants
industry_category_Printing
industry_category_Consumer Electronics
industry_category_Marketing & Advertising
industry_category_Management Consulting
industry_category_Veterinary
industry_category_Automotive
industry_category_Consumer Goods

plan_enterprise

billing_interval_yearly

helpdesk_arr

plan_pro

arr

num_enabled_apps

support_performance_30d

industry_category_Real Estate

Name: avg_first_response_time_30d, dtype: float64

file:///Users/pierremora/Downloads/Gorgias_scripts.html

(SIS RS IR S EECRNGIE S BNG I S B NG S B G RN G RS BN G S B G RN G I S I

. 000000
. 134905
. 065460
. 024780
. 021026
. 019000
.016368
.014725
. 008281
. 006912
. 006460
. 006016
. 005607
. 005227
. 004687
. 001826
. 001506
. 001436
. 001385
.001319
. 000928
. 000837
. 000179
. 000525
. 000777
. 001744
. 002671
. 004987
. 005039
. 005829
. 006128
. 006189
. 006431
. 007487
. 009293
. 010222
.014148
.018175
.021238
. 026684
.030266
. 046718
.075080
. 087922
. 091547
. 093734
. 140945
360422

NaN

11/26/25, 10:44 PM

Page 11 of 22

Gorgias_scripts 11/26/25, 10:44 PM

Imputation: avg_first_response_time_30d

| will start with the imputation process for avg_first_response_time_30d using features
like num_enabled_apps, plan, arr, and other available data.

Encoding categorical variables like 'plan' and 'billing_interval'
df_encoded = pd.get_dummies(df_actions, columns=['plan', 'billing_interval']

List the columns to verify
print(df_encoded.columns)

Index(['id', 'status', 'vitally_first_paid_date', 'churned_at', 'arr',
'helpdesk_arr', 'voice_arr', 'sms_arr', ‘'automate_arr', 'convert_ar

r,
'shopify_plan', 'gmv_bucket', 'yearly_gross_merchandise_value',
"industry_category', 'enabled_apps', 'support_performance_30d"',
'avg_first_response_time_30d', 'avg_resolution_time_30d"',
'avg_satisfaction_score_30d', 'num_enabled_apps', 'plan_basic',
'plan_enterprise', 'plan_free', 'plan_pro', 'plan_starter',

'billing_interval_yearly'],
dtype='object")

Check for missing values in the features used for imputation
missing_in_features = df_encoded[features_for_imputation].isnull().sum()
print(missing_in_features)

num_enabled_apps 0
arr 0
helpdesk_arr 3284
plan_starter 0
plan_basic 0
plan_enterprise 0
billing_interval_yearly 0

dtype: int64

Correcting the typo in the variable name
features_for_imputation = [
"'num_enabled_apps', 'arr',
'plan_starter', 'plan_basic', 'plan_enterprise',
'billing_interval_yearly'

]

Ensure you remove 'helpdesk_arr' if it's still in the list
if 'helpdesk_arr' in features_for_imputation:
features_for_imputation.remove('helpdesk_arr')

Proceed with the imputation process
from sklearn.linear_model import LinearRegression

Filter the data to include only rows where avg_first_response_time_30d is

file:///Users/pierremora/Downloads/Gorgias_scripts.html Page 12 of 22

Gorgias_scripts

11/26/25, 10:44 PM

df_complete = df_encoded.dropna(subset=['avg_first_response_time_30d'])

X
y

df_complete[features_for_imputation]
df_complete['avg_first_response_time_30d']

Train the regression model
model = LinearRegression()
model.fit(X, y)

Predict the missing values
missing_idx = df_encoded[df_encoded['avg_first_response_time_30d'].isnull()]
df_encoded.loc[missing_idx, 'avg_first_response_time_30d'] = model.predict(c

Verify the imputation
print(df_encoded['avg_first_response_time_30d'].isnull().sum())

Imputation: avg_response_time_30d

Defining the features to use for imputing avg_resolution_time_30d
features_for_imputation = [
'num_enabled_apps', ‘arr',
'plan_starter', 'plan_basic', 'plan_enterprise’,
'billing_interval_yearly', 'avg_first_response_time_30d"

]

Filtering the data to include only rows where avg_resolution_time_30d is r
df_complete = df_encoded.dropna(subset=['avg_resolution_time_30d"'])

X
y

df_complete[features_for_imputation]
df_complete['avg_resolution_time_30d"]

Train the regression model
model = LinearRegression()
model.fit(X, y)

Predicting the missing values
missing_idx = df_encoded[df_encoded['avg_resolution_time_30d'].isnull()].inc
df_encoded. loc[missing_idx, 'avg_resolution_time_30d'] = model.predict(df_er

Verifying the imputation
print(df_encoded['avg_resolution_time_30d'].isnull().sum())

Imputing: support_performance_30d

Given that support_performance_30d is influenced by

file:///Users/pierremora/Downloads/Gorgias_scripts.html Page 13 of 22

Gorgias_scripts 11/26/25, 10:44 PM

avg_first_response_time and avg_resolution_time_30d, i focused on
these two columns as main predictors for replacing missing values

import numpy as np
Defining the features to use for imputing support_performance_30d
features_for_imputation = [

'avg_first_response_time_30d', 'avg_resolution_time_30d'

]

Filtering the data to include only rows where support_performance_30d is r
df_complete = df_encoded.dropna(subset=["'support_performance_30d'])

X
y

df_complete[features_for_imputation]
df_complete['support_performance_30d"']

Train the regression model
model = LinearRegression()
model.fit(X, y)

Predicting the missing values
missing_idx = df_encoded[df_encoded['support_performance_30d'].isnull()].inc
predicted_values = model.predict(df_encoded.loc[missing_idx, features_for_in

Clipping the predicted values to ensure they are between 1 and 5
predicted_values_clipped = np.clip(predicted_values, 1, 5)

Imputing the clipped values back into the dataframe
df_encoded. loc[missing_idx, 'support_performance_30d'] = predicted_values_cl

Verifying the imputation
print(df_encoded['support_performance_30d'].isnull().sum())

Dealing with satisfaction_score_30d

Given that satisfaction_score_30d column has 71% missing values, and i
have already imputed the key variables, i needed an thoughtful approach
on how to handle this imputation effectively.

Filter the DataFrame to include only numeric columns
numeric_df = df_encoded.select_dtypes(include=[np.number])

Calculating the correlation matrix
corr_matrix = numeric_df.corr()

Extract the correlations of avg_satisfaction_score_30d with other features

satisfaction_corr = corr_matrix['avg_satisfaction_score_30d'].sort_values(as
print(satisfaction_corr)

file:///Users/pierremora/Downloads/Gorgias_scripts.html Page 14 of 22

Gorgias_scripts

file:///Users/pierremora/Downloads/Gorgias_scripts.html

11/26/25, 10:44 PM

avg_satisfaction_score_30d 1.000000
support_performance_30d 0.069663
num_enabled_apps 0.060152
yearly_gross_merchandise_value -0.013385
voice_arr -0.024471
helpdesk_arr -0.044691
arr -0.044740
automate_arr -0.046949
gmv_bucket -0.048887
sms_arr -0.050966
avg_resolution_time_30d -0.087646
convert_arr -0.096639
avg_first_response_time_30d -0.161266

Name: avg_satisfaction_score_30d, dtype: float64

Note: Based on the correlation matrix, the following features show some level of
corelation:

from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
import numpy as np

Define the features for imputing avg_satisfaction_score_30d
features_for_imputation = [
'support_performance_30d', 'num_enabled_apps',
'avg_Tfirst_response_time_30d', 'avg_resolution_time_30d'
]

Filter the data to include only rows where avg_satisfaction_score_30d is r
df_complete = df_encoded.dropna(subset=['avg_satisfaction_score_30d'])

X
y

df_complete[features_for_imputation]
df_complete['avg_satisfaction_score_30d"']

Split the data into training and test sets to validate the model
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rar

Train the RandomForestRegressor
model = RandomForestRegressor(random_state=42)
model.fit(X_train, y_train)

Predict the missing values
missing_idx = df_encoded[df_encoded['avg_satisfaction_score_30d'].isnull()].
predicted_values = model.predict(df_encoded.loc[missing_idx, features_for_in

Clip the predicted values to ensure they are within a valid range (typical
predicted_values_clipped = np.clip(predicted_values, 1, 5)

Impute the clipped values back into the dataframe
df_encoded. loc[missing_idx, 'avg_satisfaction_score_30d'] = predicted_values

Page 15 of 22

Gorgias_scripts 11/26/25, 10:44 PM

Verify the imputation
print(df_encoded['avg_satisfaction_score_30d'].isnull().sum())

0
from collections import defaultdict

Initializing dictionaries to store the sum and count of metrics for each ¢
app_performance = defaultdict(lambda: {'resolution_time_sum': @, 'response_t

Iterating over each row and accumulate metrics by app
for _, row in df_encoded.iterrows():
for app in row['enabled_apps']:
app_performance [app] ['resolution_time_sum'] += row['avg_resolution_t
app_performance[app] [' response_time_sum'] += row['avg_first_response
app_performance [app] ['satisfaction_sum'] += row['avg_satisfaction_sc
app_performance[app] ['count'] += 1

Calculating average metrics for each app
app_avg_metrics = {app: {
'avg_resolution_time': values['resolution_time_sum']
'avg_first_response_time': values['response_time_sun
'avg_satisfaction_score': values['satisfaction_sum']
} for app, values in app_performance.items()}

Converting to DataFrame for easier analysis
app_metrics_df = pd.DataFrame.from_dict(app_avg_metrics, orient='index').res
app_metrics_df.columns = ['app', 'avg_resolution_time', 'avg_first_response_

Displaying the top apps by average satisfaction score

top_apps_by_satisfaction = app_metrics_df.sort_values(by="avg_satisfaction_s
print(top_apps_by_satisfaction.head(10))

file:///Users/pierremora/Downloads/Gorgias_scripts.html Page 16 of 22

Gorgias_scripts 11/26/25, 10:44 PM

app avg_resolution_time avg_first_response_time \

122 manifest-ai-chatbot 11.975000 12.550000

81 sendlane 15.947857 7.620714

96 thankful-ai-1 11.211429 3.402857

67 arpu-test 13.288261 7.767826

117 opinew-product-reviews 6.113333 4.126667

49 junip 15.860435 10.326304

126 braivy 13.270000 7.560000

100 apiwork-app 18.865000 13.115000

97 textline 9.001111 3.492222

87 stateset-response 16.412308 8.315385
avg_satisfaction_score

122 4.875000

81 4.750257

96 4.688600

67 4.682009

117 4.670267

49 4.660478

126 4.659200

100 4.645000

97 4.631278

87 4.605815

Function to apply gradient color based on values
def gradient_color_barh(ax, bars, cmap_name):
Extract the values (widths) of the bars
bar_values = [bar.get_width() for bar in bars]
min_value, max_value = min(bar_values), max(bar_values)
norm = plt.Normalize(min_value, max_value) # Normalize the values to re

for bar in bars:
bar.set_facecolor(plt.cm.get_cmap(cmap_name) (norm(bar.get_width())))

Top 10 apps by average satisfaction score
top_apps_by_satisfaction = app_metrics_df.sort_values(by='avg_satisfaction_c
bars = top_apps_by_satisfaction['avg_satisfaction_score'].values

plt.figure(figsize=(12, 6))

bars_plot = plt.barh(top_apps_by_satisfaction['app'l, bars, color='skyblue')
gradient_color_barh(plt.gca(), bars_plot, 'Blues')

plt.xlabel('Average Satisfaction Score')

plt.title('Top 10 Apps by Average Satisfaction Score')
plt.gca().invert_yaxis()

plt.show()

Top 10 apps by lowest average resolution time (in hours)

top_apps_by_resolution = app_metrics_df.sort_values(by='avg_resolution_time'
bars = top_apps_by_resolution['avg_resolution_time'].values

file:///Users/pierremora/Downloads/Gorgias_scripts.html Page 17 of 22

Gorgias_scripts 11/26/25, 10:44 PM

plt.figure(figsize=(12, 6))

bars_plot = plt.barh(top_apps_by_resolution['app']l, bars, color='lightgreen'
gradient_color_barh(plt.gca(), bars_plot, 'Greens')

plt.xlabel('Average Resolution Time (hours)")

plt.title('Top 10 Apps by Lowest Average Resolution Time (hours)"')
plt.gca().invert_yaxis()

plt.show()

Top 10 apps by lowest average first response time (in hours)
top_apps_by_response = app_metrics_df.sort_values(by="avg_first_response_tin
bars = top_apps_by_response['avg_first_response_time'].values

plt.figure(figsize=(12, 6))

bars_plot = plt.barh(top_apps_by_response['app'], bars, color='lightcoral')
gradient_color_barh(plt.gca(), bars_plot, 'Reds')

plt.xlabel('Average First Response Time (hours)")

plt.title('Top 1@ Apps by Lowest Average First Response Time (hours)"')
plt.gca().invert_yaxis()

plt.show()

plt.savefig('/Users/pierremora/Desktop/Gorgias/top_apps_by_first_response_ti
plt.close()

/var/folders/fs/0r3n69nx483gkfs1j205nybc0000gn/T/ipykernel_22754/3682675430.
py:9: MatplotlibDeprecationWarning: The get_cmap function was deprecated in
Matplotlib 3.7 and will be removed two minor releases later. Use " "matplotli
b.colormaps[namel " or *‘matplotlib.colormaps.get_cmap(obj) " instead.
bar.set_facecolor(plt.cm.get_cmap(cmap_name) (norm(bar.get_width())))
Top 10 Apps by Average Satisfaction Score

manifest-ai-chatbot
sendlane
thankful-ai-1
arpu-test
opinew-product-reviews
junip
braivy -
apiwork-app
textline 4

stateset-response -

T T T T T
0 1 2 3 4 5
Average Satisfaction Score

file:///Users/pierremora/Downloads/Gorgias_scripts.html Page 18 of 22

Gorgias_scripts 11/26/25, 10:44 PM

Top 10 Apps by Lowest Average Resolution Time (hours)

agentsonly
opinew-product-reviews
postcall

test_flip

textline

digitalgenius

klaus

thankful-ai-1

29-next

gobot

0 2 4 6 8 10 12
Average Resolution Time (hours)

Top 10 Apps by Lowest Average First Response Time (hours)

postcall

digitalgenius

klaus

shopper-approved
callhippo-dev

thankful-ai-1
dedication-agents-integration
textline

gobot

sidekick-ai

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Average First Response Time (hours)

Segment the data into two groups: with enabled apps and without enabled ar
with_apps = df_actions[df_actions['enabled_apps'].apply(lambda x: len(x) > ¢
without_apps = df_actions[df_actions['enabled_apps'].apply(lambda x: len(x)

Checking the size of each segment
print(f"Number of observations with enabled apps: {with_apps.shapel0]}")
print (f"Number of observations without enabled apps: {without_apps.shapel[0]}

Number of observations with enabled apps: 14974
Number of observations without enabled apps: 9018

Segmenting the data into groups based on the number of enabled apps
segment_1 = df_actions[df_actions['num_enabled_apps'] == 1]

segment_2_to_4 = df_actions[(df_actions['num_enabled_apps'] >=
segment_5_to_6 = df_actions[(df_actions['num_enabled_apps'] >=

) & (df_acti
) & (df_acti

2
5

file:///Users/pierremora/Downloads/Gorgias_scripts.html Page 19 of 22

Gorgias_scripts 11/26/25, 10:44 PM

segment_7_or_more = df_actions[df_actions['num_enabled_apps'] >= 7]

Checking the size of each segment

print(f"Segment 1 Enabled App: {segment_1.shape[0@]} rows")

print(f"Segment 2 to 4 Enabled Apps: {segment_2_to_4.shapel[@]} rows")
print(f'"Segment 5 to 6 Enabled Apps: {segment_5_to_6.shape[0@]} rows")
print(f"Segment 7 or More Enabled Apps: {segment_7_or_more.shape[@]} rows")

Segment 1 Enabled App: 1416 rows

Segment 2 to 4 Enabled Apps: 8209 rows
Segment 5 to 6 Enabled Apps: 3316 rows
Segment 7 or More Enabled Apps: 2033 rows

Calculating average metrics for each segment
metrics_by_segment = {

'Segment 1 Enabled App': {
'avg_satisfaction_score': segment_1['avg_satisfaction_score_30d"'].me
'avg_resolution_time': segment_1['avg_resolution_time_30d'].mean(),
'avg_first_response_time': segment_1['avg_first_response_time_30d'].

},

'Segment 2 to 4 Enabled Apps': {
'avg_satisfaction_score': segment_2_to_4['avg_satisfaction_score_30c
'avg_resolution_time': segment_2_to_4['avg_resolution_time_30d'].mec
'avg_first_response_time': segment_2_to_4['avg_first_response_time_:

H

'Segment 5 to 6 Enabled Apps': {
'avg_satisfaction_score': segment_5_to_6['avg_satisfaction_score_30c
'avg_resolution_time': segment_5_to_6['avg_resolution_time_30d'].mec
'avg_first_response_time': segment_5_to_6['avg_first_response_time_:

}

'Segment 7 or More Enabled Apps': {
'avg_satisfaction_score': segment_7_or_more['avg_satisfaction_score_
'avg_resolution_time': segment_7_or_more['avg_resolution_time_30d'].
'avg_first_response_time': segment_7_or_more['avg_first_response_tin

by

Displaying the results
for segment, metrics in metrics_by_segment.items():
print(f'\n{segment}:")
for metric, value in metrics.items():
print(f"{metric}: {value:.2f}")

file:///Users/pierremora/Downloads/Gorgias_scripts.html Page 20 of 22

Gorgias_scripts 11/26/25, 10:44 PM

Segment 1 Enabled App:
avg_satisfaction_score: 4.37
avg_resolution_time: 46.24
avg_first_response_time: 21.31

Segment 2 to 4 Enabled Apps:
avg_satisfaction_score: 4.49
avg_resolution_time: 53.96
avg_first_response_time: 15.81

Segment 5 to 6 Enabled Apps:
avg_satisfaction_score: 4.56
avg_resolution_time: 22.29
avg_Tfirst_response_time: 11.54

Segment 7 or More Enabled Apps:
avg_satisfaction_score: 4.55
avg_resolution_time: 37.44
avg_first_response_time: 8.83

import matplotlib.pyplot as plt

Segments and their corresponding metrics

segments = ['1l Enabled App', '2 to 4 Enabled Apps', '5 to 6 Enabled Apps', '
satisfaction_scores = [4.37, 4.49, 4.56, 4.55]

resolution_times = [46.24, 53.96, 22.29, 37.44]

response_times = [21.31, 15.81, 11.54, 8.83]

Create a figure for the three subplots
plt.figure(figsize=(15, 8))

Plotting Satisfaction Scores

plt.subplot(1, 3, 1)

bars = plt.bar(segments, satisfaction_scores, color='skyblue')
plt.title('Average Satisfaction Score by Number of Enabled Apps')
plt.xlabel('Segment"')

plt.ylabel('Average Satisfaction Score')

plt.ylim(4.0, 5.0)

plt.xticks(rotation=45)

Plotting Resolution Times

plt.subplot(1, 3, 2)

bars = plt.bar(segments, resolution_times, color='lightgreen')
plt.title('Average Resolution Time by Number of Enabled Apps')
plt.xlabel('Segment"')

plt.ylabel('Average Resolution Time (hours)"')
plt.xticks(rotation=45)

Plotting First Response Times
plt.subplot(1, 3, 3)

file:///Users/pierremora/Downloads/Gorgias_scripts.html Page 21 of 22

Gorgias_scripts

bars = plt.bar(segments, response_times, color='lightcoral')
plt.title('Average First Response Time by Number of Enabled Apps')

plt.xlabel('Segment")
plt.ylabel('Average First Response Time (hours)")
plt.xticks(rotation=45)

Adjust layout to avoid overlap
plt.tight_layout()

Show the plot
plt.show()

5A(\’ler&:ge Satisfaction Score by Number of Enabled Apps Average Resolution Time by Number of Enabled Apps

11/26/25, 10:44 PM

Average First Response Time by Number of Enabled Apps

4.8 4

ol
o
L

Average Satisfaction Score
»
>

Average Resolution Time (hours)

4.2 4

4.0 4

) & <&
&YQ W & Ko
N & & NG
& * & o
<& & & N
> o o° &
a° % &
A
Segment Segment

In []: # Inspect the first few rows of the enabled_apps column

print(df_actions|['enabled_apps'].head(10))

file:///Users/pierremora/Downloads/Gorgias_scripts.html

Average First Response Time (hours)

20.04

Segment

Page 22 of 22

