
11/26/25, 10:44 PMGorgias_scripts

Page 1 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

GORGIAS USER ENGAGEMENT ANALYSIS

PYTHON SCRIPTS

import pandas as pd
import matplotlib.pyplot as plt

df_user_engagement = pd.read_csv('/Users/pierremora/Desktop/Gorgias/user_engagement.csv')

df_daily_engagement = pd.read_csv('/Users/pierremora/Desktop/Gorgias/daily_engagement.csv')

df_total_conversions = pd.read_csv('/Users/pierremora/Desktop/Gorgias/total_conversions.csv')

Creating a bar chart showing the difference between total trials
and total conversions

total_trials = df_total_conversions['total_trials'].values[0]
total_conversions = df_total_conversions['total_conversions'].values[0]
conversion_rate_percentage = df_total_conversions['conversion_rate_percentage'].values[0]

Data for the bar chart
categories = ['Total Trials', 'Total Conversions']
values = [total_trials, total_conversions]

Custom colors
grey_color = '#D3D3D3' # Light grey for total trials
light_pink_color = '#FFB6C1' # Light pink for total conversions
black_color = '#000000' # Black for text

Creating the bar chart
plt.figure(figsize=(10, 6))
bars = plt.bar(categories, values, color=[grey_color, light_pink_color])

Annotate the bars with the actual numbers
plt.text(0, total_trials + 50, f'{total_trials:,}', ha='center', va='bottom', fontsize=12, color=black_color, fontweight='bold')
plt.text(1, total_conversions + 50, f'{total_conversions:,}', ha='center', va='bottom', fontsize=12, color=black_color, fontweight='bold')

Annotate with conversion rate even further above the total conversions number
plt.text(1, total_conversions + 400, f'Conversion Rate: {conversion_rate_percentage:.2f}%',
 ha='center', va='bottom', fontsize=12, color=black_color, fontweight='bold')

Adding titles and labels
plt.title('Total Trials vs Total Conversions', fontsize=16, color=black_color, fontweight='bold')
plt.xticks(fontsize=12, color=black_color)

In [1]:

In [3]:

In [4]:

In [128…

In [135…

11/26/25, 10:44 PMGorgias_scripts

Page 2 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

plt.yticks([]) # Remove the count numbers on the left

Removing grid lines
plt.grid(False)

plt.show()

df_integration_conversion = pd.read_csv('/Users/pierremora/Desktop/Gorgias/integration_conversion.csv')

Sorting by conversion rate for better visualization
df_integration_conversion = df_integration_conversion.sort_values(by='conversion_rate_with_integration', ascending=False)

Define the figure size and style
plt.figure(figsize=(12, 8))
sns.set(style="whitegrid")

Create a horizontal bar chart
bars = plt.barh(df_integration_conversion['integration_type'], df_integration_conversion['conversion_rate_with_integration'],
 color=sns.color_palette("coolwarm", len(df_integration_conversion)))

Add the conversion rate as annotations on the bars
for i in range(len(df_integration_conversion)):
 plt.text(df_integration_conversion['conversion_rate_with_integration'].values[i] + 0.5,
 i,
 f"{df_integration_conversion['conversion_rate_with_integration'].values[i]:.2f}%",

In [136…

In [137…

11/26/25, 10:44 PMGorgias_scripts

Page 3 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

 va='center',
 fontsize=10,
 color='black')

Add total trials annotations on the bars
for i in range(len(df_integration_conversion)):
 plt.text(df_integration_conversion['conversion_rate_with_integration'].values[i] - 10,
 i,
 f"Trials: {df_integration_conversion['total_trials_with_integration'].values[i]:,}",
 va='center',
 ha='right',
 fontsize=10,
 color='white')

Add titles and labels
plt.title('Conversion Rate by Integration Type', fontsize=16, color='black', fontweight='bold')
plt.xlabel('Conversion Rate (%)', fontsize=12, color='black')
plt.ylabel('Integration Type', fontsize=12, color='black')

Invert y-axis to have the highest rate at the top
plt.gca().invert_yaxis()

Remove grid lines
plt.grid(False)

Show the plot
plt.show()

11/26/25, 10:44 PMGorgias_scripts

Page 4 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

Analyzing conversion rate based on engaged days
conversion_by_engaged_days = df_user_engagement.groupby('engaged_days')['converted'].mean().reset_index()

import seaborn as sns

colors = sns.color_palette('husl', len(conversion_by_engaged_days)) # Generating a color palette

#Visualizing conversion rate by number of engaged days with custom colors
plt.figure(figsize=(10, 6))
plt.bar(conversion_by_engaged_days['engaged_days'], conversion_by_engaged_days['converted'] * 100, color=colors)
plt.title('Conversion Rate by Number of Engaged Days')
plt.xlabel('Number of Engaged Days')
plt.ylabel('Conversion Rate (%)')
plt.xticks(conversion_by_engaged_days['engaged_days'])
plt.grid(True)
plt.show()
plt.savefig('/Users/pierremora/Desktop/Gorgias/conversion_rate_by_engaged_days.png')

<Figure size 640x480 with 0 Axes>

Visualizing user engagement over time (already done previously)
plt.figure(figsize=(10, 6))
plt.plot(df_daily_engagement['day_of_trial'], df_daily_engagement['engaged_accounts'], marker='o', color='blue')
plt.title('User Engagement Over 7-Day Trial Period')
plt.xlabel('Day of Trial')
plt.ylabel('Number of Engaged Accounts')

In [7]:

In [13]:

In [14]:

11/26/25, 10:44 PMGorgias_scripts

Page 5 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

plt.grid(True)
plt.show()

plt.savefig('/Users/pierremora/Desktop/Gorgias/user_engagement_over_time.png')

<Figure size 640x480 with 0 Axes>

df_integration_count = pd.read_csv('/Users/pierremora/Desktop/Gorgias/integrations_number.csv')

Calculating conversion rate based on the number of unique integrations set up
conversion_by_integration_count = df_integration_count.groupby('number_of_integrations')['converted'].mean().reset_index()

Multiplying conversion rate by 100 to convert to percentage
conversion_by_integration_count['converted'] *= 100

Plotting the conversion rate by number of integrations using Seaborn
plt.figure(figsize=(10, 6))
sns.barplot(x='number_of_integrations', y='converted', data=conversion_by_integration_count, palette='Blues_d')
plt.title('Conversion Rate by Number of Integrations')
plt.xlabel('Number of Integrations')
plt.ylabel('Conversion Rate (%)')
plt.grid(True)
plt.show()

plt.show()

In [138…

11/26/25, 10:44 PMGorgias_scripts

Page 6 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

df_feature_usage_conversion = pd.read_csv('/Users/pierremora/Desktop/Gorgias/feature_usage_conversion.csv')

pivot_table = df_feature_usage_conversion.pivot_table(
 index='number_of_integrations',
 columns='submitted_support_ticket',
 values='converted',
 aggfunc='mean'
)

Creating the heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(pivot_table * 100, annot=True, fmt=".1f", cmap='coolwarm', cbar_kws={'label': 'Conversion Rate (%)'})
plt.title('Conversion Rate by Number of Integrations and Support Ticket Submission')
plt.xlabel('Submitted Support Ticket')
plt.ylabel('Number of Integrations')
plt.show()

In [140…

11/26/25, 10:44 PMGorgias_scripts

Page 7 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

Section 2: How Does App Usage Impact Resolution Time, First
Response Time, and Satisfaction Score?

df_actions = pd.read_csv('/Users/pierremora/Desktop/Gorgias/Question 2/actions.csv')

df_actions.dtypes

In [92]:

In [93]:

11/26/25, 10:44 PMGorgias_scripts

Page 8 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

id object
status object
vitally_first_paid_date object
churned_at object
plan object
arr float64
helpdesk_arr float64
voice_arr float64
sms_arr float64
automate_arr float64
convert_arr float64
billing_interval object
shopify_plan object
gmv_bucket float64
yearly_gross_merchandise_value float64
industry_category object
enabled_apps object
support_performance_30d float64
avg_first_response_time_30d float64
avg_resolution_time_30d float64
avg_satisfaction_score_30d float64
dtype: object

Inspect the first few rows of the enabled_apps column
print(df_actions['enabled_apps'].head(10))

0 []
1 []
2 []
3 []
4 []
5 []
6 []
7 []
8 []
9 []
Name: enabled_apps, dtype: object

import ast
import re

Function to fix the formatting of the enabled_apps strings
def fix_formatting(apps_str):
 # Add quotes around each app name correctly without over-quoting
 fixed_str = re.sub(r'(\w[\w-]*)', r'"\1"', apps_str)
 return fixed_str

Applyw the formatting fix to the enabled_apps column
df_actions['enabled_apps'] = df_actions['enabled_apps'].apply(lambda x: fix_formatting(x) if isinstance(x, str) else x)

Out[93]:

In [94]:

In [95]:

11/26/25, 10:44 PMGorgias_scripts

Page 9 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

Now safely evaluate the strings to convert them to lists
df_actions['enabled_apps'] = df_actions['enabled_apps'].apply(lambda x: eval(x) if isinstance(x, str) else x)

Verify the conversion
print(df_actions['enabled_apps'].head())

0 []
1 []
2 []
3 []
4 []
Name: enabled_apps, dtype: object

Recalculating the num_enabled_apps feature
df_actions['num_enabled_apps'] = df_actions['enabled_apps'].apply(len)

Verifying the recalculation
print(df_actions[['enabled_apps', 'num_enabled_apps']].head(10))

 enabled_apps num_enabled_apps
0 [] 0
1 [] 0
2 [] 0
3 [] 0
4 [] 0
5 [] 0
6 [] 0
7 [] 0
8 [] 0
9 [] 0

Filtering and display rows where enabled_apps is not an empty list
non_empty_apps = df_actions[df_actions['enabled_apps'].apply(lambda x: isinstance(x, list) and len(x) > 0)]

Displaying the first few rows of the non-empty apps
print(non_empty_apps[['enabled_apps', 'num_enabled_apps']].head(10))

 enabled_apps num_enabled_apps
599 [gmail-native, recharge-native] 2
605 [smile-native] 1
606 [channelreply, facebook-native, gmail-native, ... 4
607 [conduit-1, facebook-native, gmail-native, gor... 5
609 [facebook-native, shopify-native] 2
611 [facebook-native, optizo, shopify-native] 3
612 [shopify-native, tiktok-shop-2, yotpo-native] 3
613 [facebook-native, gmail-native, shopify-native] 3
614 [gmail-native, shopify-native] 2
615 [gmail-native, woocommerce] 2

Handling Missing Values

In [96]:

In [97]:

11/26/25, 10:44 PMGorgias_scripts

Page 10 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

First step is identifying the missing values in the dataset and then decide how to
handle missing values

Calculating the total number of missing values per column
missing_values = df_actions.isnull().sum()

Calculating the percentage of missing values per column
missing_percentage = (missing_values / len(df_actions)) * 100

Displaying the missing values and their percentages
missing_data = pd.DataFrame({'Missing Values': missing_values, 'Percentage': missing_percentage})
print(missing_data.sort_values(by='Percentage', ascending=False))

 Missing Values Percentage
convert_arr 23368 97.399133
sms_arr 20135 83.923808
voice_arr 20117 83.848783
avg_satisfaction_score_30d 17149 71.477993
churned_at 14287 59.549016
automate_arr 11822 49.274758
avg_resolution_time_30d 11326 47.207402
avg_first_response_time_30d 11267 46.961487
support_performance_30d 10997 45.836112
shopify_plan 10479 43.677059
yearly_gross_merchandise_value 9447 39.375625
industry_category 6018 25.083361
gmv_bucket 5904 24.608203
helpdesk_arr 3284 13.687896
id 0 0.000000
enabled_apps 0 0.000000
billing_interval 0 0.000000
status 0 0.000000
arr 0 0.000000
plan 0 0.000000
vitally_first_paid_date 0 0.000000
num_enabled_apps 0 0.000000

Selecting potential predictors
potential_predictors = [
 'plan', 'num_enabled_apps', 'industry_category',
 'support_performance_30d', 'arr', 'helpdesk_arr',
 'billing_interval'
]

Encoding categorical variables to check correlations
df_encodedd = pd.get_dummies(df_actions[potential_predictors + ['avg_first_response_time_30d']], drop_first=True)

Checking correlations
correlationss = df_encodedd.corr()['avg_first_response_time_30d'].sort_values(ascending=False)
print(correlationss)

In [98]:

In [100…

11/26/25, 10:44 PMGorgias_scripts

Page 11 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

avg_first_response_time_30d 1.000000
plan_starter 0.134905
plan_basic 0.065460
industry_category_Computer Software 0.024780
industry_category_Entertainment 0.021026
industry_category_Hospital & Health Care 0.019000
industry_category_Design 0.016368
industry_category_Consumer Services 0.014725
industry_category_Textiles 0.008281
industry_category_Luxury Goods & Jewelry 0.006912
industry_category_Electrical & Electronic Manufacturing 0.006460
industry_category_Information Technology & Services 0.006016
industry_category_Renewables & Environment 0.005607
industry_category_Non-profit Organization Management 0.005227
industry_category_Building Materials 0.004687
industry_category_Hospitality 0.001826
industry_category_Food & Beverages 0.001506
industry_category_Furniture 0.001436
industry_category_Music 0.001385
industry_category_Wholesale 0.001319
industry_category_Retail 0.000928
industry_category_Health, Wellness & Fitness 0.000837
industry_category_Media Production 0.000179
industry_category_Sporting Goods -0.000525
industry_category_Sports -0.000777
industry_category_Transportation/Trucking/Railroad -0.001744
industry_category_Publishing -0.002671
plan_free -0.004987
industry_category_Arts & Crafts -0.005039
industry_category_Professional Training & Coaching -0.005829
industry_category_Internet -0.006128
industry_category_Medical Device -0.006189
industry_category_Food Production -0.006431
industry_category_Restaurants -0.007487
industry_category_Printing -0.009293
industry_category_Consumer Electronics -0.010222
industry_category_Marketing & Advertising -0.014148
industry_category_Management Consulting -0.018175
industry_category_Veterinary -0.021238
industry_category_Automotive -0.026684
industry_category_Consumer Goods -0.030266
plan_enterprise -0.046718
billing_interval_yearly -0.075080
helpdesk_arr -0.087922
plan_pro -0.091547
arr -0.093734
num_enabled_apps -0.140945
support_performance_30d -0.360422
industry_category_Real Estate NaN
Name: avg_first_response_time_30d, dtype: float64

11/26/25, 10:44 PMGorgias_scripts

Page 12 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

Imputation: avg_first_response_time_30d

I will start with the imputation process for avg_first_response_time_30d using features
like num_enabled_apps, plan, arr, and other available data.

Encoding categorical variables like 'plan' and 'billing_interval'
df_encoded = pd.get_dummies(df_actions, columns=['plan', 'billing_interval'], drop_first=True)

List the columns to verify
print(df_encoded.columns)

Index(['id', 'status', 'vitally_first_paid_date', 'churned_at', 'arr',
 'helpdesk_arr', 'voice_arr', 'sms_arr', 'automate_arr', 'convert_ar
r',
 'shopify_plan', 'gmv_bucket', 'yearly_gross_merchandise_value',
 'industry_category', 'enabled_apps', 'support_performance_30d',
 'avg_first_response_time_30d', 'avg_resolution_time_30d',
 'avg_satisfaction_score_30d', 'num_enabled_apps', 'plan_basic',
 'plan_enterprise', 'plan_free', 'plan_pro', 'plan_starter',
 'billing_interval_yearly'],
 dtype='object')

Check for missing values in the features used for imputation
missing_in_features = df_encoded[features_for_imputation].isnull().sum()
print(missing_in_features)

num_enabled_apps 0
arr 0
helpdesk_arr 3284
plan_starter 0
plan_basic 0
plan_enterprise 0
billing_interval_yearly 0
dtype: int64

Correcting the typo in the variable name
features_for_imputation = [
 'num_enabled_apps', 'arr',
 'plan_starter', 'plan_basic', 'plan_enterprise',
 'billing_interval_yearly'
]

Ensure you remove 'helpdesk_arr' if it's still in the list
if 'helpdesk_arr' in features_for_imputation:
 features_for_imputation.remove('helpdesk_arr')

Proceed with the imputation process
from sklearn.linear_model import LinearRegression

Filter the data to include only rows where avg_first_response_time_30d is not missing for training

In [102…

In [104…

In [106…

11/26/25, 10:44 PMGorgias_scripts

Page 13 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

df_complete = df_encoded.dropna(subset=['avg_first_response_time_30d'])

X = df_complete[features_for_imputation]
y = df_complete['avg_first_response_time_30d']

Train the regression model
model = LinearRegression()
model.fit(X, y)

Predict the missing values
missing_idx = df_encoded[df_encoded['avg_first_response_time_30d'].isnull()].index
df_encoded.loc[missing_idx, 'avg_first_response_time_30d'] = model.predict(df_encoded.loc[missing_idx, features_for_imputation])

Verify the imputation
print(df_encoded['avg_first_response_time_30d'].isnull().sum())

0

Imputation: avg_response_time_30d

Defining the features to use for imputing avg_resolution_time_30d
features_for_imputation = [
 'num_enabled_apps', 'arr',
 'plan_starter', 'plan_basic', 'plan_enterprise',
 'billing_interval_yearly', 'avg_first_response_time_30d'
]

Filtering the data to include only rows where avg_resolution_time_30d is not missing for training
df_complete = df_encoded.dropna(subset=['avg_resolution_time_30d'])

X = df_complete[features_for_imputation]
y = df_complete['avg_resolution_time_30d']

Train the regression model
model = LinearRegression()
model.fit(X, y)

Predicting the missing values
missing_idx = df_encoded[df_encoded['avg_resolution_time_30d'].isnull()].index
df_encoded.loc[missing_idx, 'avg_resolution_time_30d'] = model.predict(df_encoded.loc[missing_idx, features_for_imputation])

Verifying the imputation
print(df_encoded['avg_resolution_time_30d'].isnull().sum())

0

Imputing: support_performance_30d

Given that support_performance_30d is influenced by

In [107…

11/26/25, 10:44 PMGorgias_scripts

Page 14 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

avg_first_response_time and avg_resolution_time_30d, i focused on
these two columns as main predictors for replacing missing values

import numpy as np
Defining the features to use for imputing support_performance_30d
features_for_imputation = [
 'avg_first_response_time_30d', 'avg_resolution_time_30d'
]

Filtering the data to include only rows where support_performance_30d is not missing for training
df_complete = df_encoded.dropna(subset=['support_performance_30d'])

X = df_complete[features_for_imputation]
y = df_complete['support_performance_30d']

Train the regression model
model = LinearRegression()
model.fit(X, y)

Predicting the missing values
missing_idx = df_encoded[df_encoded['support_performance_30d'].isnull()].index
predicted_values = model.predict(df_encoded.loc[missing_idx, features_for_imputation])

Clipping the predicted values to ensure they are between 1 and 5
predicted_values_clipped = np.clip(predicted_values, 1, 5)

Imputing the clipped values back into the dataframe
df_encoded.loc[missing_idx, 'support_performance_30d'] = predicted_values_clipped

Verifying the imputation
print(df_encoded['support_performance_30d'].isnull().sum())

0

Dealing with satisfaction_score_30d

Given that satisfaction_score_30d column has 71% missing values, and i
have already imputed the key variables, i needed an thoughtful approach
on how to handle this imputation effectively.

Filter the DataFrame to include only numeric columns
numeric_df = df_encoded.select_dtypes(include=[np.number])

Calculating the correlation matrix
corr_matrix = numeric_df.corr()

Extract the correlations of avg_satisfaction_score_30d with other features
satisfaction_corr = corr_matrix['avg_satisfaction_score_30d'].sort_values(ascending=False)
print(satisfaction_corr)

In [109…

In [111…

11/26/25, 10:44 PMGorgias_scripts

Page 15 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

avg_satisfaction_score_30d 1.000000
support_performance_30d 0.069663
num_enabled_apps 0.060152
yearly_gross_merchandise_value -0.013385
voice_arr -0.024471
helpdesk_arr -0.044691
arr -0.044740
automate_arr -0.046949
gmv_bucket -0.048887
sms_arr -0.050966
avg_resolution_time_30d -0.087646
convert_arr -0.096639
avg_first_response_time_30d -0.161266
Name: avg_satisfaction_score_30d, dtype: float64

Note: Based on the correlation matrix, the following features show some level of
corelation:

from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
import numpy as np

Define the features for imputing avg_satisfaction_score_30d
features_for_imputation = [
 'support_performance_30d', 'num_enabled_apps',
 'avg_first_response_time_30d', 'avg_resolution_time_30d'
]

Filter the data to include only rows where avg_satisfaction_score_30d is not missing for training
df_complete = df_encoded.dropna(subset=['avg_satisfaction_score_30d'])

X = df_complete[features_for_imputation]
y = df_complete['avg_satisfaction_score_30d']

Split the data into training and test sets to validate the model
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Train the RandomForestRegressor
model = RandomForestRegressor(random_state=42)
model.fit(X_train, y_train)

Predict the missing values
missing_idx = df_encoded[df_encoded['avg_satisfaction_score_30d'].isnull()].index
predicted_values = model.predict(df_encoded.loc[missing_idx, features_for_imputation])

Clip the predicted values to ensure they are within a valid range (typically 1 to 5)
predicted_values_clipped = np.clip(predicted_values, 1, 5)

Impute the clipped values back into the dataframe
df_encoded.loc[missing_idx, 'avg_satisfaction_score_30d'] = predicted_values_clipped

In [112…

11/26/25, 10:44 PMGorgias_scripts

Page 16 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

Verify the imputation
print(df_encoded['avg_satisfaction_score_30d'].isnull().sum())

0

from collections import defaultdict

Initializing dictionaries to store the sum and count of metrics for each app
app_performance = defaultdict(lambda: {'resolution_time_sum': 0, 'response_time_sum': 0, 'satisfaction_sum': 0, 'count': 0})

Iterating over each row and accumulate metrics by app
for _, row in df_encoded.iterrows():
 for app in row['enabled_apps']:
 app_performance[app]['resolution_time_sum'] += row['avg_resolution_time_30d']
 app_performance[app]['response_time_sum'] += row['avg_first_response_time_30d']
 app_performance[app]['satisfaction_sum'] += row['avg_satisfaction_score_30d']
 app_performance[app]['count'] += 1

Calculating average metrics for each app
app_avg_metrics = {app: {
 'avg_resolution_time': values['resolution_time_sum'] / values['count'],
 'avg_first_response_time': values['response_time_sum'] / values['count'],
 'avg_satisfaction_score': values['satisfaction_sum'] / values['count']
 } for app, values in app_performance.items()}

Converting to DataFrame for easier analysis
app_metrics_df = pd.DataFrame.from_dict(app_avg_metrics, orient='index').reset_index()
app_metrics_df.columns = ['app', 'avg_resolution_time', 'avg_first_response_time', 'avg_satisfaction_score']

Displaying the top apps by average satisfaction score
top_apps_by_satisfaction = app_metrics_df.sort_values(by='avg_satisfaction_score', ascending=False)
print(top_apps_by_satisfaction.head(10))

In [114…

11/26/25, 10:44 PMGorgias_scripts

Page 17 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

 app avg_resolution_time avg_first_response_time \
122 manifest-ai-chatbot 11.975000 12.550000
81 sendlane 15.947857 7.620714
96 thankful-ai-1 11.211429 3.402857
67 arpu-test 13.288261 7.767826
117 opinew-product-reviews 6.113333 4.126667
49 junip 15.860435 10.326304
126 braivy 13.270000 7.560000
100 apiwork-app 18.865000 13.115000
97 textline 9.001111 3.492222
87 stateset-response 16.412308 8.315385

 avg_satisfaction_score
122 4.875000
81 4.750257
96 4.688600
67 4.682009
117 4.670267
49 4.660478
126 4.659200
100 4.645000
97 4.631278
87 4.605815

Function to apply gradient color based on values
def gradient_color_barh(ax, bars, cmap_name):
 # Extract the values (widths) of the bars
 bar_values = [bar.get_width() for bar in bars]
 min_value, max_value = min(bar_values), max(bar_values)
 norm = plt.Normalize(min_value, max_value) # Normalize the values to range [0, 1]

 for bar in bars:
 bar.set_facecolor(plt.cm.get_cmap(cmap_name)(norm(bar.get_width())))

Top 10 apps by average satisfaction score
top_apps_by_satisfaction = app_metrics_df.sort_values(by='avg_satisfaction_score', ascending=False).head(10)
bars = top_apps_by_satisfaction['avg_satisfaction_score'].values

plt.figure(figsize=(12, 6))
bars_plot = plt.barh(top_apps_by_satisfaction['app'], bars, color='skyblue')
gradient_color_barh(plt.gca(), bars_plot, 'Blues')
plt.xlabel('Average Satisfaction Score')
plt.title('Top 10 Apps by Average Satisfaction Score')
plt.gca().invert_yaxis()
plt.show()

Top 10 apps by lowest average resolution time (in hours)
top_apps_by_resolution = app_metrics_df.sort_values(by='avg_resolution_time', ascending=True).head(10)
bars = top_apps_by_resolution['avg_resolution_time'].values

In [121…

11/26/25, 10:44 PMGorgias_scripts

Page 18 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

plt.figure(figsize=(12, 6))
bars_plot = plt.barh(top_apps_by_resolution['app'], bars, color='lightgreen')
gradient_color_barh(plt.gca(), bars_plot, 'Greens')
plt.xlabel('Average Resolution Time (hours)')
plt.title('Top 10 Apps by Lowest Average Resolution Time (hours)')
plt.gca().invert_yaxis()
plt.show()

Top 10 apps by lowest average first response time (in hours)
top_apps_by_response = app_metrics_df.sort_values(by='avg_first_response_time', ascending=True).head(10)
bars = top_apps_by_response['avg_first_response_time'].values

plt.figure(figsize=(12, 6))
bars_plot = plt.barh(top_apps_by_response['app'], bars, color='lightcoral')
gradient_color_barh(plt.gca(), bars_plot, 'Reds')
plt.xlabel('Average First Response Time (hours)')
plt.title('Top 10 Apps by Lowest Average First Response Time (hours)')
plt.gca().invert_yaxis()
plt.show()

plt.savefig('/Users/pierremora/Desktop/Gorgias/top_apps_by_first_response_time.png', bbox_inches='tight')
plt.close()

/var/folders/fs/0r3n69nx483gkfslj205nybc0000gn/T/ipykernel_22754/3682675430.
py:9: MatplotlibDeprecationWarning: The get_cmap function was deprecated in
Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotli
b.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
 bar.set_facecolor(plt.cm.get_cmap(cmap_name)(norm(bar.get_width())))

11/26/25, 10:44 PMGorgias_scripts

Page 19 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

Segment the data into two groups: with enabled apps and without enabled apps
with_apps = df_actions[df_actions['enabled_apps'].apply(lambda x: len(x) > 0)]
without_apps = df_actions[df_actions['enabled_apps'].apply(lambda x: len(x) == 0)]

Checking the size of each segment
print(f"Number of observations with enabled apps: {with_apps.shape[0]}")
print(f"Number of observations without enabled apps: {without_apps.shape[0]}")

Number of observations with enabled apps: 14974
Number of observations without enabled apps: 9018

Segmenting the data into groups based on the number of enabled apps
segment_1 = df_actions[df_actions['num_enabled_apps'] == 1]
segment_2_to_4 = df_actions[(df_actions['num_enabled_apps'] >= 2) & (df_actions['num_enabled_apps'] <= 4)]
segment_5_to_6 = df_actions[(df_actions['num_enabled_apps'] >= 5) & (df_actions['num_enabled_apps'] <= 6)]

In [122…

In [125…

11/26/25, 10:44 PMGorgias_scripts

Page 20 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

segment_7_or_more = df_actions[df_actions['num_enabled_apps'] >= 7]

Checking the size of each segment
print(f"Segment 1 Enabled App: {segment_1.shape[0]} rows")
print(f"Segment 2 to 4 Enabled Apps: {segment_2_to_4.shape[0]} rows")
print(f"Segment 5 to 6 Enabled Apps: {segment_5_to_6.shape[0]} rows")
print(f"Segment 7 or More Enabled Apps: {segment_7_or_more.shape[0]} rows")

Segment 1 Enabled App: 1416 rows
Segment 2 to 4 Enabled Apps: 8209 rows
Segment 5 to 6 Enabled Apps: 3316 rows
Segment 7 or More Enabled Apps: 2033 rows

Calculating average metrics for each segment
metrics_by_segment = {
 'Segment 1 Enabled App': {
 'avg_satisfaction_score': segment_1['avg_satisfaction_score_30d'].mean(),
 'avg_resolution_time': segment_1['avg_resolution_time_30d'].mean(),
 'avg_first_response_time': segment_1['avg_first_response_time_30d'].mean()
 },
 'Segment 2 to 4 Enabled Apps': {
 'avg_satisfaction_score': segment_2_to_4['avg_satisfaction_score_30d'].mean(),
 'avg_resolution_time': segment_2_to_4['avg_resolution_time_30d'].mean(),
 'avg_first_response_time': segment_2_to_4['avg_first_response_time_30d'].mean()
 },
 'Segment 5 to 6 Enabled Apps': {
 'avg_satisfaction_score': segment_5_to_6['avg_satisfaction_score_30d'].mean(),
 'avg_resolution_time': segment_5_to_6['avg_resolution_time_30d'].mean(),
 'avg_first_response_time': segment_5_to_6['avg_first_response_time_30d'].mean()
 },
 'Segment 7 or More Enabled Apps': {
 'avg_satisfaction_score': segment_7_or_more['avg_satisfaction_score_30d'].mean(),
 'avg_resolution_time': segment_7_or_more['avg_resolution_time_30d'].mean(),
 'avg_first_response_time': segment_7_or_more['avg_first_response_time_30d'].mean()
 }
}

Displaying the results
for segment, metrics in metrics_by_segment.items():
 print(f"\n{segment}:")
 for metric, value in metrics.items():
 print(f"{metric}: {value:.2f}")

In [126…

11/26/25, 10:44 PMGorgias_scripts

Page 21 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

Segment 1 Enabled App:
avg_satisfaction_score: 4.37
avg_resolution_time: 46.24
avg_first_response_time: 21.31

Segment 2 to 4 Enabled Apps:
avg_satisfaction_score: 4.49
avg_resolution_time: 53.96
avg_first_response_time: 15.81

Segment 5 to 6 Enabled Apps:
avg_satisfaction_score: 4.56
avg_resolution_time: 22.29
avg_first_response_time: 11.54

Segment 7 or More Enabled Apps:
avg_satisfaction_score: 4.55
avg_resolution_time: 37.44
avg_first_response_time: 8.83

import matplotlib.pyplot as plt

Segments and their corresponding metrics
segments = ['1 Enabled App', '2 to 4 Enabled Apps', '5 to 6 Enabled Apps', '7 or More Enabled Apps']
satisfaction_scores = [4.37, 4.49, 4.56, 4.55]
resolution_times = [46.24, 53.96, 22.29, 37.44]
response_times = [21.31, 15.81, 11.54, 8.83]

Create a figure for the three subplots
plt.figure(figsize=(15, 8))

Plotting Satisfaction Scores
plt.subplot(1, 3, 1)
bars = plt.bar(segments, satisfaction_scores, color='skyblue')
plt.title('Average Satisfaction Score by Number of Enabled Apps')
plt.xlabel('Segment')
plt.ylabel('Average Satisfaction Score')
plt.ylim(4.0, 5.0)
plt.xticks(rotation=45)

Plotting Resolution Times
plt.subplot(1, 3, 2)
bars = plt.bar(segments, resolution_times, color='lightgreen')
plt.title('Average Resolution Time by Number of Enabled Apps')
plt.xlabel('Segment')
plt.ylabel('Average Resolution Time (hours)')
plt.xticks(rotation=45)

Plotting First Response Times
plt.subplot(1, 3, 3)

In [127…

11/26/25, 10:44 PMGorgias_scripts

Page 22 of 22file:///Users/pierremora/Downloads/Gorgias_scripts.html

bars = plt.bar(segments, response_times, color='lightcoral')
plt.title('Average First Response Time by Number of Enabled Apps')
plt.xlabel('Segment')
plt.ylabel('Average First Response Time (hours)')
plt.xticks(rotation=45)

Adjust layout to avoid overlap
plt.tight_layout()

Show the plot
plt.show()

Inspect the first few rows of the enabled_apps column
print(df_actions['enabled_apps'].head(10))

In []:

