ARCHITECTING AND
DESIGNING A DATA
WAREHOUSE FOR
REPORTING AND
OLAP

AN ETL PROJECT USING YELP AND CLIMATE DATA

NAME:PIERRE MORA ERAZO

DATE: 06/15/2024

PROJECT
OVERVIEW

Objective: To architect and design a Data Warehouse (DWH) for the
purpose of reporting and Online Analytical Processing (OLAP) using skills
acquired in the Designing Data Systems course.

Data Sources:

* Yelp Data: Business information, reviews, tips, and check-ins.
* Climate Data: Temperature and precipitation observations.

Tools Used: Snowflake for data storage and transformation.

DATA ARCHITECTURE FOR ETL PROCESS

* Ingesting and Migrating Data from Sources to Data Warehouse

BUSINESS_CHECKIN

YELP Json BUSINESS_COVID_STATUS
BUSINESS_INFO
BUSINESS_REVIEW

E BUSINESS_TIP

USER

Ingestion Layer
via Snowflake

Fact_Reviews
Fact_Weather

Fact_Checkin
Fact_Tip

Dim_User
Dim_Business
Dim_Date

+
{1—}+ub|eau-

STAGING
AREA

LV_PRECIPITATION
LV_TEMPERATURE

LV_WEATHER
User_Details
Business_Info
Customer_Reviews
Customer_Tips
Business_Checkin
Business_Status

Query &
Analysis Layer

CREATING THE STAGING SCHEMA

* Creation of the staging environment in Snowflake and the upload process for Yelp and climate data:

PMORAER#COMPUTE_WH@YELP_COVID. STAGING>CREATE OR REPLACE FILE FORMAT mycsvformat
TYPE = 'CSV'
I,’F\.. Wil JLULLIITILS VI -II\.-LF CDMPRESSIW - 'AUTD'
PMORAER#COMPUTE_WH@(no database).(no schema)>USE DATABASE YELP_COVID; FIELD_DELIMITER = *,*
RECORD_DELIMITER = '\n'
SKIP_HEADER = 1
ERROR_ON_COLUMN_COUNT_MISMATCH = TRUE
NULL_IF = ('NULL', 'null"')
EMPTY_FIELD_AS_NULL = TRUE;

1 Row(s) produced. Time Elapsed: 0.114s
PMORAER#COMPUTE_WH@YELP_COVID.PUBLIC>CREATE SCHEMA STAGING;

] . Time Elapsed: 0.243s
PMORAER#COMPUTE_WH@YELP_COVID.STAGING>CREATE OR REPLACE STAGE my_csv.stage
FILE_FORMAT = mycsyformat;

4 NUW\L\DJ PIUUULCUI ramc I_I.GPDCLI- 4 IHUD
PMORAER#COMPUTE_WH@YELP_COVID.STAGING>create or replace file format myisonformat type = 'JSON' strip_o
uter_array = true;
001003 (42000): SQL compilation error:
syntax error line 2 at position 48 unexpected 'uter.array'.
PMORAER#COMPUTE_WH@YELP_COVID.STAGING>create or replace file format myjsonformat type = 'JSON'strip_outer_array = true;

1 Row(s) produced. Time Elapsed: @.17@s

UPLOADING CSV FILES TO STAGING SCHEMA

« Creating LV_TEMPERATURE table and uploading the CSV. File to the staging schema:

PMORAER#COMPUTE_WH@YELP_COVID.STAGING>CREATE TABLE "LV_TEMPERATURE" (
"DATE" VARCHAR(8),
"MIN_TEMP" VARCHAR(18),
""MAX_TEMP" VARCHAR(10),
"NORMAL. _MIN_TEMP" FLOAT,
"NORMAL _MAX_TEMP" FLDAT) H

1 Row(s) produced. Time Elapsed: 0.780s
PMORAER#COMPUTE_WH@YELP_COVID.STAGING>PUT fil /Users/pierremora/Desktop/Data_engineering/usw@®023169-temperature-degreef.csv @1Y_CSV_STAGE AUTO_COMPRESS=TRUE;

1 Row(s) produced. Time Elapsed: 1.159s
PMORAER#COMPUTE_WH@YELP_COVID.STAGING>COPY INTO "LV_TEMPERATURE" FROM @MY_CSV_STAGE/usw@90923169-: temperature deareef.csy. gz file_fo

—— e —— 4

mit | errors_seen \ first_error | first_error_line | first_error_character | first_error_column_name |

e T B e |

28241 | [} \ NULL NULL | NULL

R R e e e e A e e

PMURAER#COMPUTE_WH@YELP_COVIDI STAGING>CREATE TABLE "LV_PRECIPITATION"(| source_size | target_size | source_compression | target_conpression | status | message |
"DATE" VARCHAR(8), g : -

n 1] | sa23 169! ! ipitation-inchyssy | uswRBA23169-1as-veoasNccarran-i | = inehacsuaz | 528165 | 118992 | NONE GZIP | UPLOADED | |
PRECIPITATION" VARCHAR(5), e e P o e R | Bt B e S Lo S Lot S

| ATt
"PRECIPITATION_NORMAL" FLO L] ok, Tie s L1
= HORAERACOMPUTE. ﬂ@‘fELP (U“IIJ §TxEINE>

ONTINUE' PURGE = TRUE;

B R B s i e i i i A A S i | status | rows_parsed | rows_loaded | error_linit | errors_seen | first_error | first_error_line | first_error_character | first_error_column_name

| status | —

|__I | my. s staoe/usndRAZ3169- las-veaasRecarrancint l-am-precipitation-inghcsy, gz | LOADED | 28041 | WL ML 0| NULL | MOLL | NULL | WL

| Table LV_PRECIPITATION successfully created. |

e

UPLOADING JSON FILES TO STAGING SCHEMA

Creating BUSINESS_COVID_STATUS and BUSINESS_INFO Tables and uploading their
respective JSON files to the staging schema:

PMORAER#COMPUTE WHRYELP. covip GING>CREATE TABLE "BUSINESS_COVID_STATUS"("BUSINESS_JSON" VARIANT);

+
| status

| Table BUSINESS COVID_STATUS successfully created

+

1 Row(s) produced. Time Elapsed: 0.466s

PMORAER#COMPUTE_WH@YELP_COVID.STAGING>CREATE OR REPLACE STAGE my_json_stage
FILE_FORMAT = myisonformat;

—
| status

1 Row(s) pruduced. Time Elapsed: 8.434s
PMORAER#COMPUTE_WH@YELP_COVID.STAGING=PUT file:///Users/pierremora/Desktop/Data_engineering/yelp_academic_dataset_covid_features.json @my_json_stage AUTO_COMPRESS=TRUE;

——
| target

1 Row(s) produced. Time Elapsed: 4.947s

PMURAER#CUMPUTE NH@YELP CovID. STﬂGING>Cuny into BUSINESS_COVID.
——t

son, stage/yelp_academlc dataset_covid_ features ison.az | LOADED | 289795 | 209795
e
1 Row(s) produced. Time Elapsed 5.499s
PMURAER#CUMPUTE NH@YELP CovID. STﬂGING>CREATE TABLE "BUSINESS_INFO" ("BUSINESS_INFO_JSON" VARIANT);

| status

| Table BUSINESS _INFO successfully create
— —
1 Ruw(s) pruduced. Time Elapsed: 8.661s
PMDRAER#CUMPUTE NH@YELP covio ﬂGING>PUT file: ///Users/pxerremura/Desktap/Data engxneerLng/yelp_dataset/yelp_academlc dataset business.json @my_]sun stage AUTU CDMPRESS— TRUE parallel=
- —+m e +
| source_size | target_size | source. cnmpress1an | target_compression | status | message
-t +— +—

113553795 | 20348592 | NONE

1 Row(s) pruduced. Time Elapsed 13, 4545
H!DRAER#COMPUTE NH@YELP covio ﬂGING>COPY INTO "BUSINESS_INFQ" FROM @my]sun stage/yelp academic_dataset _business.ison.gz file furmat my]sunfurmat on_error= 'skip_file'
———+ —— -
| status | rows, parsed | rows_loaded | error_limit | errors_seen | first_error | flrst error_line | first_error_t character | flrst _error_column_name

e r————— ———————- rere————r——— —]|

150346 | 156345 | @ | NULL NULL | NULL
- +

UPLOADING JSON FILES TO STAGING SCHEMA

Creating BUSINESS_CHECKIN Table and uploading the respective JSON files to the
staging schema:

PMDRAER#COMPLITE WH@YELP CDVID STAGING>CREATE TABLE "BUSINESS_CHECK_IN" ("BUSINESS_CHECK_IN_JSON" VARIAN
o
| status

| Table BUSINESS_CHECK_IN successfully created

————

1 Row(s) produced. Time Elapse 0.526s

PMORAER#COMPUTE WH@YELP COVID.STAGING=>PUT file:///Users/pierremora/Desktop/Data_engineering/yelp. dataset/yelp academic_dataset_checkin son_stage AUTO_COMPRESS= TRUE parallel=6;
+

— —

| source_size | target_size | source_compression | target_cumpressinn | status | message |

e]

—— . —

—_— =

D S—— —_—

| 286958945 | 80199328 | NONE | UPLOADED | I

1 Row(s) produced. Time Elapse
PMORAER#COMPUTE_WH@YELP_COVID.STAGING=COPY INTO "BUSINESS_CHECK_IN" FROM my_json_stage/yelp_academic_dataset checkin,ison.gz file_format=myisonformat on_error='skip_file

001003 (42000): SQL compilation error:
syntax error line 1 at position 35 unexpected 'my_json_stage'.
PMORAER#COMPUTE WH@YELP COVID.STAGING>COPY INTO "BUSINESS_CHECK_IN" FROM @my_json stage/yelp_academlc dataset. checkln.]sun.gz file_format=myisonformat on_erro skip_file'

— ———— e —+—— e e e

| status | rows_parsed | rows_loaded | error_limit | errors_seen flrstferrnr | first_error_line first_error_character | first_error_column_name |

— | e [e e = it
| LOADED | 131930 | 131030 | 1 @ | NULL | NULL | NULL |

b ———— e —————

1 Row(s) produced. Time Elapsed: 12.1945
PMORAER#COMPUTE_WH@YELP_COVID.STAGING>CREATE TABLE "BUSINESS_REVIEW" ("BUSINESS_REVIEW_JSON" VARIAN

UPLOADING JSON FILES TO STAGING SCHEMA

 Creating BUSINESS_REVIEW Table and uploading the respective JSON file to the
staging schema:

PMDFMER#C.OMPUTE_WH@YELP_COViD.STAGING> H pierremora/Desktop/Data_engineering/yelp_dataset/yelp_academic_dataset_review_&4.json Omy_json_stage AUTO_COMPRESS parallel

| source | target | source_size | target_size | source_compression | target_compression | status | message |

| yelp_academic_dataset_review_4.json | yelp_academic_dataset_review_&4.json.gz | 534186718 | 218442272 | NONE | GZIP | UPLOADED | |

1 Row(s) produced. Time Elapsed: 104.867s
PMORAER#COMPUTE_WHR@YELP_COVID.STAGING> my_json_stage/yelp_academic_dataset_review_4.json.gz file_format-myjsonformat on_error £

| file | status | rows_parsed | rows_loaded | error_limit | errors_seen | first_error | first_error_line | first_error_character | first_error_column_name |
|

|
| my_json_stage/yelp_academic_dataset_review_4.json.gz | LOADED | 694506 | 694506 | 1| e | | | |

1 Row(s) produced. Time Elapsed: 25.239s
PMORAER#COMPUTE_WHRYELP_COVID.STAGING> z pierremora/Desktop/Data_engineering/yelp_dataset/yelp_academic_dataset_review_5.json (my_json_stage AUTO_COMPRESS parallel=6;

| source | target | source_size | target_size | source_compression | target_compression | status | message |

| velp_academic_dataset_review_5.json | yelp_academic_dataset_review_5.json.gz | 534187004 | 218262784 | NONE | GZIP | UPLOADED | |

1 Row(s) produced. Time Elapsed: 104.768s
PMORAER#COMPUTE_WHRYELP_COVID.STAGING> my_Jjson_stage/yelp_academic_dataset_review_5.json.gz file_format-myjsonformat on_error H

| file | status | rows_parsed | rows_loaded | error_limit | errors_seen | first_error | first_error_line | first_error_character | first_error_column_name |

|
| my_json_stage/yelp_academic_dataset_review_5.json.gz | LOADED | 693888 | 693888 | 1 | e | | | | |

1 Row(s) produced. Time Elapsed: 24.990s
PMORAER#COMPUTE_WHR@YELP_COVID.STAGING> z pierremora/Desktop/Data_engineering/yelp_dataset/yelp_academic_dataset_review_é.json (my_json_stage AUTO_COMPRESS parallel=6;

| source | target | source_size | target_size | source_compression | target_compression | status | message |
|

| velp_academic_dataset_review_6.json | yelp_academic_dataset_review_é6.json.gz | 534187484 | 218223184 | NONE | GZIP | UPLOADED | |

1 Row(s) produced. Time Elapsed: 185.146s
PMORAER#COMPUTE_WHRYELP_COVID.STAGING> my_Jjson_stage/yelp_academic_dataset_review_é.json.gz file_format=myjsonformat on_error A

| file | status | rows_parsed | rows_loaded | error_limit | errors_seen | first_error | first_error_line | first_error_character | first_error_column_name |

I
| my_json_stage/yelp_academic_dataset_review_é6.json.gz | LOADED | 700857 | 700857 | 1| e | | | | |

1 Row(s) produced. Time Elapsed: 26.124s
PMORAER#COMPUTE_WHRYELP_COVID.STAGING> H pierremora/Desktop/Data_engineering/yelp_dataset/yelp_academic_dataset_review_7.json my_json_stage AUTO_COMPRESS parallel

| source | target | source_size | target_size | source_compression | target_compression | status | message |

| yelp_academic_dataset_review_7.json | yelp_academic_dataset_review_7.json.gz | 534186339 | 218889664 | NONE | GZIP | UPLOADED | |

1 Row(s) produced. Time Elapsed: 104.683s
PMORAER#COMPUTE_WHR@YELP_COVID.STAGING> my_json_stage/yelp_academic_dataset_review_7.json.gz file_format-myjsonformat on_error £

| file | status | rows_parsed | rows_loaded | error_limit | errors_seen | first_error | first_error_line | first_error_character | first_error_column_name |

|
| my_json_stage/yelp_academic_dataset_review_7.json.gz | LOADED | 695442 | 695442 | 1] e |] | | |

1 Row(s) produced. Time Elapsed: 25.187s

UPLOADING JSON FILES TO STAGING SCHEMA

« Creating BUSINESS_TIP AND USER Tables and uploading their respective JSON files to the staging
schema:

PMURAER#CbMPUTE_WH@YELP_CGVIID.STAGING> my_json_stage/yelp_academic_dataset_tip.json.gz file_format=myjsonformat on_error
B . e T T fmm e e T e e +
| status | rows_parsed | rows_loaded | error_limit | errors_seen | first_error | first_error_line | first_error_character | first_error_column_name |

1 Row(s) produced. Time Elapsed: 12.979s
PMORAER#COMPUTE_WHRYELP_COVID.STAGING>

1 Row(s) produced. Time Elapsed: 1.212s
PMORAER#COMPUTE _WHRYELP_COVID.STAGING> : pierremora/Desktop/Data_engineering/yelp_dataset/yelp_academic_dataset_user_81.json (my_json_stage AUTO_COMPRESS parallel=9;

| source | target | source_size | target_size | source_compression | target_compression | status | message |
|- e 4o oo o oo 4o o |
| yelp_academic_dataset_user_B1.json | yelp_academic_dataset_user_@1.json.gz | 840838797 | 517441376 | NONE | UPLOADED | |
B — e pomm oo oo o - e e +
1 Row(s) produced. Time Elapsed: 230..400s

PMORAER#COMPUTE_WHRYELP_COVID.STAGING> my_json_stage/yelp_academic_dataset_user_01.json.gz file_format=myjsonformat on_error g

B T et T A

| file | status | rows_parsed | rows_loaded | error_limit | errors_seen | first_error | first_error_line | first_error_character | first_error_column_name |

[—— e ———————— oo

| my_j tage/yelp_academic_dataset_user_81.json.gz | LOADED | 401784 | 401784 | 1] | | | | |

T A A T R T

1 Row(s) produced. Time Elapsed: 33.144s

* This slide demonstrates the creation of the staging environment in Snowflake and the upload process for Yelp and
climate dataq, including handling large JSON files by splitting them into smaller chunks.

STAGING SCHEMA IN
SNOWFLAKE

« Overview of the Created Staging Schema and
tables

« This screenshot displays the Snowflake Ul
interface with the created staging schema and its
respective tables, showcasing the initial setup
before data transformation.

INFORMATION_SCHEMA

ODS

PUBLIC

STAGING

Tables

BUSINESS_CHECK_IN

BUSINESS_COVID_STATUS
BUSINESS_INFO
BUSINESS_REVIEW
BUSINESS_TIP
LV_PRECIPITATION
LV_PRECIPITATION_TRANSFO...
LV_TEMPERATURE
LV_TEMPERATURE_TRANSFO...
USER

Stages
MY_CSV_STAGE
MY_JSON_STAGE

File Formats
MYCSVFORMAT

MYJSONFORMAT

ENTITY-RELATIONSHIP (ER) DIAGRAM

 This ER diagram visualizes the relationships between different entities in the data
structure, providing a clear overview of how Yelp and climate data are interconnected.

—— PK date_weather DATE
max_temp FLOAT
min_temp FLOAT

normal_max_temp |FLOAT
normal_min_temp |NUMBER
precipitation NUMBER

precipitation_normal | FLOAT

PK user_id STRING 4‘_\ PK review_id STRING —+— PK business_id STRING - — PK business_id STRING
name STRING FK user_id STRING name STRING highlights STRING
review_count NUMBER FK business_id STRING >—J address STRING delivery_or_takeout BOOLEAN
useful STRING stars FLOAT city STRING grubhub_enabled BOOLEAN
funny STRING useful NUMBER state STRING call_to_action_enabled BOOLEAN
caol STRING funny NUMBER postal_coede STRING request_a_quote_enabled (BOOLEAN
friends STRING cool NUMBER latitude FLOAT covid_banner STRING
fans NUMBER review_text STRING longitude FLOAT temporary_closed_until TIMESTAMP
average_stars FLOAT < review_date TIMESTAMP stars FLOAT virtual_services_offered STRING)
compliment_hot NUMBER review_count NUMBER
compliment_more |NUMBER is_open NUMBER
compliment_profile |NUMBER attributes VARIANT
compliment_cute |NUMBER categories STRING
compliment_list NUMBER S PKFK user_id STRING hours VARIANT
compliment_note |NUMBER Pl.FK business_id STRING -
compliment_plain |NUMBER tip_text STRING
date_tip FLOAT

compliment_cool |NUMBER

compliment_count | NUMBER
compliment_funny |NUMBER P -

compliment_writer | NUMBER

compliment_photos | NUMBER

PK,FK business_id STRING
PK date_checkin | TIMESTAMP

TRANSFORMING DATA FROM STAGING TO ODS

» This slide demonstrates the SQL queries used to transform data from staging to ODS, including the use of

JSON functions to extract and transform data. It also provides a comparison of data sizes in raw files, staging
tables, and ODS tables

Code Versions

YELP_COVID.0DS

54 CREATE TABLE Business_info(
business_id STRING P! Y KEY,
name STRING,

address STRING,

3 name STRING,
4 review_count NUMBER,

5 yelping_since TIMESTAMP. 58 city STRING,
useful STRING, 59 state STRING,
7 funny STRING, 60 postal_code STRING,
8 cool. STRING, 61 Llatitude FLOAT,
friends STRING, 62 Longitude FLOAT,
fans NUMBER, 63 stars FLOAT,
average_stars FLOAT, 4 revien_count NUMBER,
compliment_hot NUMBER, 5 is_open NUMBER,
3 compliment_more NUMBER, attributes VARIANT
compliment_profile NUMBER, &7 categories STRING,
compliment_cute NUMBER, 68 hours VARIANT
16 compliment_List NUMBER, &9)
1 compliment_note NUMBER,]
compliment_plain NUMBER, 1
compliment_cool. NUMBER, 72 INSERT INTO 0DS.Business_Info (
compliment_funny NUMBER, 73 business_id,
compliment_writer NUMBER, 4 name,
2 compliment_photos NUMBER); 75 address,
3 city,
2 state,
25 8 postal_code
26 latitude,
2 TNTO ODS.User Details (user_id, name, Péview.count, yelping_since, useful, funny, cool, friends, fans, average_stars, compliment_hot, compliment_more, compliment_profile, compliment_cute, 80 Longitude,
compliment_note, compliment_plain, compliment_coel, compliment_funny, compliment_writer, compliment_photos) 8 stars,
82 review_count,
*:user_id: :STRING, 83 is_open,
30 " :name : : STRING, 84 attributes,
1 " review_count: :NUNBER, 85 categories,
2 ":yelping_since: : TIMESTAMP 86 hours
3 useful: :NUMBER, 8 I
4 " funny: :NUMBER, 88 SELECT
" :cool: :NUMBER, 89 "BUSINESS_INFO_JSON":business_id::STRING,
" friends: :STRING, 9 "BUSINESS_INFO_JSON" :name: : STRING,
37 ":fans: :NUMBER, 9 "BUSINESS_INFO_JSON":address: :STRING,
3 "average_stars: :FLOAT, 92 "BUSINESS_INFO_JSON":city::STRING,
" :compliment_hot: :NUMBER, 73 "BUSINESS_INFO_JSON":state: :STRING,
40 " :compliment_more: :NUMBER, 4 "BUSINESS_INFO_JSON" :postal_code: :STRING,
41 ":compliment_profile::NUMBER, ¥5 "BUSINESS_INFO_JSON":Latitude: :FLOAT,
42 " :compliment_cute: :NUMBER, 9 "BUSINESS_INFO_JSON":Longitude: :FLOAT,
3 " :compliment_List: :NUMBER, 7 "BUSINESS_INFO_JSON":stars: :FLOAT,
":compliment_note: :NUMBER, 98 "BUSINESS_INFO_JSON":review_count: :NUMBER,
“:compliment_plain: :NUMBER, 99 "BUSINESS_INFO_JSON":is_open: :NUMBER,
:compliment_cool.: :NUMBER "BUSINESS_INFO_JSON":attributes: :VARIANT,

"BUSINESS_INFO_JSON":categories: :STRING,
"BUSINESS_INFO_JSON" :hours: : VARTANT
FROM STAGING.BUSINESS_INFO

*:compliment_funny: :NUMBER,
" :compliment_writer::NUMBER,
4 "USER_ complinent _photos: :NUMBER
50 FROM STAGING.User

Settings

CREATE TABLE customer_reviews(

review_id STRING PRIMARY KEY,

user_id STRING,

business_id STRING

stars FLOAT,

useful NUMBER,

funny NUMBER,

cool NUMBER,

review_text STRING,

review_date TIMESTAMP

FO N KEY (user_id) REFERENCES 0DS.User_Details(user_id)
N KEY (business_id) REFERENCES ODS.Business_infol(business_idl

INSERT INTO 0DS.customer_reviews (
review_id,
user_id,
business_id,
stars,
useful,
funny,
cool.,
review_text,
review_date

*BUSTNESS_REY " :revien_id: :STRING,
*BUSTNESS_REV *:user_id::STRING,

" :business_id: :STRING,

":stars; :FLOAT,

" useful: :NUMBER,

" funny: :NUMBER,

*:cool: :NUMBER,

*:text::STRING AS review_text,

":date: TIMESTAMP AS review_date

CREATE TABLE Business_tipsi
user_id STRING,
business_id STRING,
tip_text STRING,
date_tip TIMESTAMP,
compliment_count NUMBER,
PRIMARY KEY (user_id business_id),
N KEY (user_id) REF| S 0DS.User Details(user_id),
N KEY (business_id) REFERENCES ODS.Business_info(business_id)

TRANSFORMING DATA FROM STAGING

INSERT INTO Business_tips(
user_id,
business_id,
tip_text,
date_tip,
compliment_count)
"BUSINESS_TIP_JSON":user_id::STRING,
"BUSINESS_TIP_JSON":business_id: :STRING,
"BUSINESS_TIP_JSON":text::STRING AS tip_text,
"BUSINESS_TIP_JSON" :date: :TIMESTAMP AS date_tip,
"BUSINESS_TIP_JSON":compliment_count::NUMBER
FROM STAGING.BUSINESS_TIP;

CREATE E Business_checkin(
business_id STRING,
date_checkin TIMESTAMP,
WARY KEY (business_id,date_checkin),
TGN KEY (business_id) R CES 0DS.Business_info(business_id)

INSERT INTO ODS.Business_checkin (
business_id,
date_checkin

)

SELECT
BUSINESS_CHECK_IN_JSON:business_id: :STRING AS business_id,
TRY_TO_TIMESTAMP(trim(value)) AS date_checkin

FROM STAGING.BUSINESS_CHECK_IN

LATERAL FLATTEN(INPUT => SPLIT(BUSINESS_CHECK_IN_JSON:date, }) AS date_checkin_data;

business_status (
business_id STRING ARY KEY,
highlights STRING,
delivery_or_takeout BOOLEAN,
grubhub_enabled BOOLEAN,
call_to_action_enabled BOOLEAN,
request_a_quote_enabled BOOLEAN,
covid_banner STRING,
temporary_closed_until TIMESTAMP,
virtual_services_offered STRING,

FOREIGN KEY (business_id) S 0DS.Business_info(business_id)

TO ODS

TRANSFORMING DATA FROM STAGING TO ODS

delivery_or_takeout,
grubhub_enabled,
L_to_action_en

RING) AS highlights

request .
NULL, BUSINESS_ :STRING)

IFF (BUSINESS P
BUSINESS_JSON ~tu ervic ere NG AS wirtual
STAGING. bu

TIMESTAMP (BUSINESS_JS

E Lv_weather(
r DATE

p FLOAT,
min_temp FLOAT

ipitation NUMBER(
pitation_normal FLO

T INTO ODS.lv_weather (
_weather,
-t
max_temp,
normal_min_temp,

MIN_TEMP
_TEMP
MAL _MIN_TEMP,
ORMAL _MAX_TEMP
PRECIPITATION
PITATION_NORMAL
_TEMPERATURE_TRANSFORMED
N STAGING.LV_PR
t.DATE = p.DATE:

COMPARISON OF DATA SIZES IN RAW FILES,
STAGING TABLES, AND ODS TABLES

SCHEMA_NAME TABLE_NAME ROW_COUNT SIZEMB Query Details
oDs BUSINESS_CHECKIN 26713750 192.7 Query duration
oDSs BUSINESS_INFO 150346 1.5

Rows

oDs BUSINESS_STATUS 209795 70 QueryID 01b5c5f9-0305-f106-0..

oDs BUSINESS_TIPS 908915 P
Show more v

OoDs CUSTOMER_REVIEWS 7691076
OoDs LV_WEATHER 28241 SCHEMA_NAME

oDs ODS_TABLE_SIZES null
oDs

oDs RAW_FILE_SIZES 8

Staging
oDs STAGING_TABLE_SIZES null

Raw
oDs USER_DETAILS 1987897 i
usw00023169-las-vegas-mccarran-intl-ap-precipitation-inch.csv null

usw00023169-temperature-degreef.csv null RANEESNANE

:) 100% filled
yelp_academic_dataset_business.json null w2k e

yelp_academic_dataset_checkin.json null

] N . ROW_COUNT
yelp_academic_dataset_covid_status.json null =

yelp_academic_dataset_review.json null
B mr 26713750
yelp_academic_dataset_tip.json null
yelp_academic_dataset_user.json null SIZE_MB
Staging BUSINESS_CHECK_IN 131930

Staging BUSINESS_COVID_STATUS 209795
Staging BUSINESS_INFO 150346
Staging BUSINESS_REVIEW 7691076
Staging BUSINESS_TIP 908915
Staging LV_PRECIPITATION 28241
Staging LV_PRECIPITATION_TRANSFORMED 28241
Staging LV_TEMPERATURE 28241
Staging LV_TEMPERATURE_TRANSFORMED 28241

Staging USER 1987897

DATA WAREHOUSE STAR SCHEMA

« Thisslide illustrates the star schema of the data warehouse, showcasing the relationships between
dimension and fact tables for efficient querying and analysis.

date_id(PK,.FK)
min_temp
max__temp
normal_min_temp
normal__max__temp
precipitation

precip_normal

date_id (PK)
vear
quarter
month
day
day_of_week
.

Fact Reviews
review__id (PK)
business__id (FK)
user_id (FK)
date__id (FK)
stars

useful
funny
cool
review text

review date

user_id (PK,FK)
business_id (PK,FK)
date__tip (PK,FK)
tip__text
compliment_count

business_id (PK)

name

address

ity
state
postal__code
latitude
lonngitude
stars
review_ count
is_open
attributes

categories

hours

Fact_Buslness_Checkln]
business_id (PK,FK)
date__checkin (PK,FK)

user_id (PK)
name
review__count
yvelping_since
useaful
funny
cool
friends
fans

average_stars

compliment

DATA WAREHOUSE STAR SCHEMA

Explanation of Why We Have Multiple Fact Tables:

Having multiple fact tables in a star schema design is crucial for several reasons:

1. Different Types of Analysis:

» Fact_Reviews: Focuses on the review data, capturing details about user reviews, ratings, and associated business and user information
» Fact_Weather: Captures weather data, which is essential for analyzing the impact of weather conditions on business reviews.

« Fact_Business_Tip: Stores business tip data, which provides insights into additional user feedback separate from formal reviews.

» Fact_Business_Checkin: Tracks business check-ins, offering another dimension of user interaction with businesses.

2. Separation of Concerns:

» Each facttable represents a distinct type of business process or event. By separating these into different fact tables, we maintain clarity and
focus for each type of analysis.

3. Performance Optimization:
* Smaller, specialized fact tables can improve query performance because each table is optimized for specific types of queries and analysis.
4. Easier Maintenance and Scalability:

* Managing and scaling the data warehouse is easier when fact tables are organized by distinct business processes, allowing for more
straightforward updates and maintenance.

SQL QUERIES FOR DATA MOVEMENT
(ODS TO DWH)

name STRING,

review_count NUMBER,
yelping_since DATE,
useful STRING

funny STRING,

cool STRING,

friends STRING

fans NUMBER

average_stars FLOAT,
compliment_hot NUMBER,
compliment_more NUMBER,
compliment_profile NUMBER,
compliment_cute NUMBER,
compliment_List NUMBER,
compliment_note NUMBER,
compliment_plain NUMBER,
compliment_cool. NUMBER,
complLiment_funny NUMBER,
compliment_writer NUMBER
compliment_photos NUMBER);

user_id,

name,
review_count,
CAST(yelping_since AS DATE) AS yelping_since,
useful,

funny,

cool,

friends

fans,
average_stars,
complinent _hot,
compliment_more,
complinent _profile,
complinent _cute,
conplinent List,
compliment _note,
compliment_plain,
compliment_cool,
complLiment_funny
conplinent _writer
compliment_photos

INSERT INTO Dim_User (b
user_id, 6 FROM
name, 70 ODS.User _Details;
review_count, n
yelping_since
useful,
funny
cool,
friends,
fans,
average_stars,

CREATE TABLE Dim_Busi
business_id STRING PRIMARY
name STRING,
address STRING,

city STRING,

compliment _hot, state STRING,

compliment _more, 0 postal_code STRING,

compliment_profile, 81 Latitude FLOAT,

compliment _cute, Longitude FLOAT,

compliment_List, stars FLOAT

review_count NUMBER,
1s_open HUMBE

attributes VA i

categories STRING,

hours VARIANTI;

compliment _note,
compliment_plain,
compliment_cool,
compliment_funny,
compliment_writer,

SQL QUERIES FOR DATA MOVEMENT
(ODS TO DWH)

CREATE TABLE Dim_Date |
INSERT INTO Dim_Business(date_id DATE PRIMARY KEY,

business_id year NUMBER,
name, month NUMBER,

day NUMBER,

address,
cit quarter NUMBER,
sta:é week NUMBER,

t L d weekday NUMBER,
Eos-a QCO) day_nane STRING,
ail?u) month_name STRING,
l:ﬂgltude. 1s_weekend BOOLEAN
stars,

review_count,
is_open, g .0
sttributes, 138 INSERT INTO Dim_Date (date_id, year, month, day, quarter, week, weekday, day_name, month_name, is_weekend)
categories, 139 WITH RECURSIVE date_sequence AS
hours) it)DATE("1990-01-01') AS date_id
SELECT business_id, iU L
nafe, 2 T DATEADD(DAY, 1, date_id)
address, 143 W date_sequence
city, 14 date_id < TODATE(' 2024-12-31")
state, o)
postal_code, W6 SELECT
Latitude, 1 date_id,
Longitude, 148 EXTRACT(YEAR FROM date_id) AS year,
1 EXTRACT(MONTH FROM date_id) AS month,
EXTRACT (DAY FROM date_id) AS day,
EXTRACT(QUARTER FROM date_id) AS quarter,
EXTRACT(WEEK FROM date_id) AS week,
EXTRACT (DAYOF WEE! ate_id) AS weekday,
TO_CHAR (date_id, | AS day_nane,

| AS month_nane,

stars,
review_count,
is_open,
attributes,
categories,

FROM ODS . BUSINESS_INFO
WHERE categories ILIKE

FROM

date_sequence;

SQL QUERIES FOR DATA MOVEMENT
(ODS TO DWH)

date_weather
min_temp,
Dim_User (user_id) max_temp
(business_id) REFERENCES Dim_Business(business_id) :f::‘jt:::
(date_1d) Date(date_id) Trecipivation
precipitation_normal
Fact_Reviens (YELP_COVID_0DS LV_WEATHER

compliment _count NUMBER
tip_text STRING,
R KEY (user_id) REF Dim_User (user_id)
NCES Dim.Business (busines
(date_id) ® s Din_Date(dste_id)

u.user_.
b.business_id
d.date_id
r.stars
r.useful,
r.funny
r.cool, tip_text
r.revie
CONCAT(. CAST(row_number{) over lorder by user_id) as varchar)) AS tip_id
00S.Customer_reviews r g
20 business_id,
Dim_User u ON r.user_id = u.user_id date_tip: :DATE
N compliment _count
Dim_Business b ON ss_id = b.business_. JLipatext
YELP_COVID.0DS . BUSINESS_TIPS;

Dim_Date d ON r.review_date: D, d.date_id

CREATE TABLE Fact_Checkin (
checkin_id STRING PRIMAR
business_id STRING,
precipitation_normal date_id DATE,
FOREIGN KEY (date_id) REFERENCES Dim_Date(date_id) 2 GN KEY (business_id) § Dim_Business(business_id),
GN KEY (date_id) REFERENCES Dim_Date(date_id)

INSERT INTO Fact_Checkin (
checkin_id,
business_id,
date_id

CONCAT (business_id, '_". CAST(row_number() over (order by business_id) as varchar)) AS checkin_id
business_id,
date_checkin: :DATE AS date_id
FROM
YELP_COVID.0DS. BUSINESS_CHECKIN;

QUERYING THE DATA WAREHOUSE FOR
INSIGHTS

WITH TemperatureRanges
SELE!
r.date_id,
r.business_id,
stars,

min_temp N

min_temp 3 AND w.min_temp <=
min_temp > 50 AND w.min_temp <= 7
.min_temp > 70 AND w.min_temp <=

temp_range
Fact_Reviews r
Fact_Weather w ON r.date_id = w.date_id

EC
b.name AS business_name,

tr.temp_range,

COUNT (*) number _of_reviews,

ROUND (AVG(tr.stars), 2) average_rating

TemperatureRanges tr
Dim_Business b ON tr.business_id = b.business_id

b.name,
tr.temp_range
R

b.name,
tr.temp_range;

BUSINESS_NAME TEMP_RANGE NUMBER_OF_REVIEWS AVERAGE_RATING

"Genuino" Italian Cafe' Cold (33-50°F)

"Genuino" Italian Cafe' Hot (> 85°F)

“Genuino" Italian Cafe' Moderate (51-70°F) . 01b50649-0305-£101~
"Genuino" Italian Cafe' Warm (71-85°F)
#1 Mongolian BBQ - Best Stir Fried Noodles In Boise Cold (33-50°F)
#1 Mongolian BBQ - Best Stir Fried Noodles In Boise Hot (> 85°F) BUSINESS_NAME
#1 Mongolian BBQ - Best Stir Fried Noodles In Boise Moderate (51-70°F) 100% filled
#1 Mongolian BBQ - Best Stir Fried Noodles In Boise Warm (71-85°F)
$5 Fresh Burger Stop Hot (> 85°F) TEMP_RANGE
$5 Fresh Burger Stop Moderate (51-70°F)

$5 Fresh Burger Stop Warm (71-85°F)

&pizza - UPenn Cold (33-50°F) { &I Ask Copilot

Warm (J= 5519

&nizza - UPenn Hot (> 85°F)

CONCLUSIONS AND ACKNOWLEDGEMENTS

1. Conclusions:

Summary of Data Architecture:

* Successfully designed a robust data architecture for integrating Yelp and climate datasets using Snowflake.
* Created a well-structured data pipeline from raw data ingestion to a fully-functional data warehouse.

* Implemented staging, ODS, and DWH schemas to facilitate efficient data processing and analysis.

* Ensured data integrity and consistency through proper transformation and normalization techniques.

2. Project Achievements:

Developed a comprehensive data architecture diagram to visualize the data flow and relationships between different layers.

Utilized Snowflake’s capabilities to manage large datasets and perform complex transformations.

Designed and implemented a star schema for the data warehouse, optimizing for OLAP queries.

Achieved a scalable and maintainable data warehouse structure that supports future data integration and analysis needs.

3. Next Steps:

Further enhance the data warehouse by integrating additional data sources and refining existing transformations.

Explore advanced data modeling techniques to improve query performance and data insights.

Implement data governance and security measures to ensure the protection and privacy of the data.

	Slide 1: Architecting and Designing a Data Warehouse for Reporting and OLAP
	Slide 2: PROJECT OVERVIEW
	Slide 3: DATA ARCHITECTURE FOR ETL PROCESS
	Slide 4: CREaTING THE STAGING SCHEMA
	Slide 5: UPLOADING CSV FILES TO STAGING SCHEMA
	Slide 6: UPLOADING JSON FILES TO STAGING SCHEMA
	Slide 7: UPLOADING JSON FILES TO STAGING SCHEMA
	Slide 8: UPLOADING JSON FILES TO STAGING SCHEMA
	Slide 9: UPLOADING JSON FILES TO STAGING SCHEMA
	Slide 10: STAGING SCHEMA IN SNOWFLAKE
	Slide 11: Entity-relationship (er) diagram
	Slide 12: TRANSFORMING DATA FROM STAGING TO ODS
	Slide 13: TRANSFORMING DATA FROM STAGING TO ODS
	Slide 14: TRANSFORMING DATA FROM STAGING TO ODS
	Slide 15: comparison of data sizes in raw files, staging tables, and ODS tables
	Slide 16: DATA WAREHOUSE STAR SCHEMA
	Slide 17: DATA WAREHOUSE STAR SCHEMA
	Slide 18: SQL QUERIES FOR DATA MOVEMENT (ODS TO DWH)
	Slide 19: SQL QUERIES FOR DATA MOVEMENT (ODS TO DWH)
	Slide 20: SQL QUERIES FOR DATA MOVEMENT (ODS TO DWH)
	Slide 21: QUERYING THE DATA WAREHOUSE FOR INSIGHTS
	Slide 22: Conclusions and Acknowledgements

